Air infiltration in buildings : literature survey and proposed research agenda.

Reviews past research in air infiltration, discussing various models. Proposes research agenda. Gives anotated bibliography. Describes commercial and residential models. Gives test results and a summary of the models.

Infiltration-pressurization correlation: simplified physical modeling.

Presents a model for predicting air infiltration that eliminates many site- specific parameters normally required. The only information necessary is the geometry and leakage of the structure obtained from fan pressurization measurements. Theleakage quantities, expressed in terms of effective areas, are total leakage area and the leakage areas of the floor and ceiling. Weather parameters are mean wind speed, terrain class, and average temperature difference. The model separates the infiltration problem into two distinct parts: stack and wind regimes.

Theoretical and experimental studies of heat loss due to ventilation.

Outlines two techniques for estimating ventilation heat losses in houses. The first is a tracer gas technique using a constant concentration of gas and the second a theoretical prediction method. The theoretical technique treats the building as a multi-cell model with specified wind pressure, leakage openings and background leakage area. Reports use of the method for simulating the natural ventilation of a house in London and the effectiveness of sealing the windows and floor.

Programmed computer model of air infiltration in small residential buildings with oil furnace.

Describes computer program for the prediction of the air infiltration load in small residential buildings. The model represents an oil-fired furnace, a smoke pipe with barometric damper, a chimney and a non-partitioned building, with leakage openings in the building envelope. The model can be used to predict the air change rate of a small house under various combinations of indoor/outdoor temperature, wind-speed, wind direction and operation of an oil fired furnace.

Natural ventilation of buildings

Reports model scale experiments to investigate the validity of digital analogue methods of predicting natural ventilation. Finds calculated ventilation rates up to 30% higher than observed model ventilation rates. Shows differences between observed and computed results caused by operating efficiency of ventilation openings being less than calibrated efficiencies. Corrected ventilation rates, allowing for changes in efficiency due to pressure fluctuations and lateral air flows over model surfaces showed close agreement with observed results.

Calculation of air exchange in multi-storey buildings using electronic computers.

Describes a computer program used to calculate the air exchange in multi- storey buildings. An air network is drawn up for the building and arbitrary initial pressures are assigned. A system of equations is drawn up for all linearly independent loops andjunctions and the program solves this system of equations. States that comparison with the hydraulic analogy method gives a discrepancy, not greater than about 3%. NOTES translation available from B.S.R.I.A. price 1 pound

Computer calculations of air flows in buildings. Datamatberegning af luftstromninger i bygninger.

Outlines principles behind a program for calculating air flow in buildings. The generally accepted method for these calculations is Kirchoff's network equations, of which the "knot method" and the "loop method" are alternatives. The program uses a mixture of both, in an attempt to keep the intermingling of the equations to be solved on a low level. Presents results of calculations on a 50-room example, in which it was the purpose to demonstrate the possibility of using the program for discussion of ventilating system fluctuations.

Fortran IV program to calculate air infiltration in buildings.

Describes computer program used to calculate air flows and pressure differential in a building as a result of a combination of wind effect, stack action and the operation of air handling systems. Describes mathematical model of building and the assumptions and limitations of program. Gives listing of complete program.

A Fortran IV program to simulate air movement in multi-storey buildings.

Describes computer program used to calculate the air flows and pressure differentials in a multi-storey building as a result of a combination of wind effect, stack effect and the operation of air handling systems. Describes mathematical model of building and assumptions and limitations of program. Gives complete listing of program.

Infiltration-pressurization correlations:surface pressures and terrain effects.

Describes a general model for air infiltration which will accomodate wind pressures, stack effect and ventilation openings provided the vents are either all above or all below their respective neutral pressure levels. States that main innovation of this model is expressing the infiltration as a function of the shell leakage and of the neutral heights of each face.Describes experimental method for finding the neutral pressure level. Gives typical values of parameters for tight mid-westhouses for light and strong wind.