General economic indicator for performance assessment of smart ventilation systems

In the frame of the project Flux50 smart ventilation, researchers and industrials aim at qualifying ventilation in mid-sized buildings through multidisciplinary consideration of sleep quality, user satisfaction, acoustic comfort, installation, maintenance, resilience and indoor air quality. As those factors may impact at different levels it is important to select a common metric for evaluation. Assessment of financial costs induced by the various categories will be used in that purpose.

Modelling thermal comfort and energy consumption of a typical mixed-cooling apartment in Guilin, China

Many studies have shown that the use of mixed-mode cooling can bring down the cooling load significantly while maintaining satisfactory in door air quality and thermal comfort. But there is little information available concerning mixed-mode cooling in China. Thus, basing on design parameters of design standard, A series of computer simulation of a typical mixed-cooling apartment in Guilin, lies south-west of China, was conducted by Eneryplus and Climate Consultant software.

Large-scale performance analysis of a smart residential MEV system based on cloud data

This study is a first large-scale analysis of the performance of a cloud connected and smart residential mechanical extract ventilation (MEV) system based on field data. About 350 units were analysed over a period of 4 months from December 2018 up to March 2019, corresponding with the main winter period in Belgium. Half of the units were installed as a smartzone system which means additional mechanical extraction from habitable rooms as bedrooms. 

Potential of mechanical ventilation for reducing overheating risks in retrofitted Danish apartment buildings from the period 1850-1890 – A simulation-based study

Advancing energy efficient renovation solutions in buildings necessitate adopting high-insulation and airtightness to avoid heat loss through transmission and infiltration, which can result in overheating. Elevated indoor temperatures have a highly negative effect on building occupants’ health, wellbeing and productivity. With the possibility of remote working, people spend more time at home, and therefore addressing the elevated indoor temperatures and the overheating risks in residential buildings proves to be essential.

Multi-zone demand-controlled ventilation in residential buildings: An experimental case study

Numerous studies have investigated the application of multi-zone demand-controlled ventilation for office buildings. However, although Swedish regulations allow ventilation rates in residential buildings to be decreased by 70 % during non-occupancy, this system is not very common in the sector. The main focus of the present study was to experimentally investigate the indoor air quality and energy consumption when using multi-zone demand-controlled ventilation in a residential building. The building studied was located in Borlänge, Sweden.

Towards zero energy industrial halls — simulation and optimization with integrated design approach

Net-zero energy building (NZEB) is thought to be the building of choice, but in practice, is also synonym  to high investment cost. It is, therefore, very important to investigate if the amount of the additional capital investment could be recouped from the energy saving (or generation). The investigation is particularly meaningful for industrial halls for the great energy saving potential (with respect to the high energy demand) and the ready energy generation possibility (due to favourable building geometry).

Mechanical cooling energy reduction for commercial buildings in hot climates: Effective use of external solar shading incorporating effects on daylight contribution

This paper investigates the effectiveness of multiple external shading devices and identifies the most effective fixed external shading configurations for commercial building types in hot climates. Daylight contribution is also analysed in detail in order to monitor the daylighting factor reduction including uniformity for each shading configuration. Existing dynamic thermal modeling software is used to completing analysis on a theoretical open office plan building.

Development of a data model for energy consumption analysis and prediction of large-scale commercial buildings

This paper presents a new methodology for largescale commercial buildings energy consumption data analysis. This methodology relies on a unified energy consumption classification structure and on a set of index models and estimating models. All these elements have been combined into a data model that is presented in this article. This new methodology has been applied successfully to 4 office buildings, two of them being Chinese and two of them being French.

Uncertainty analysis for building performance simulation – A comparison of four tools

Over the last three decades the use of building performance simulation (BPS) tools has increased but its ability to support building design is still limited. State of the art BPS tools have the potential to be used more extensively during the entire design process if their current capabilities are expanded.

Use of simulation tools for managing buildings energy demand

There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation and also audit retrofits actions. These models apply various techniques varying from simple regression to more physically grounded models.

Pages