This paper discusses the experimental study of direct delivery of cold air into a full scale environmental chamber using different diffusers, i.e. a multi-cone circular ceiling diffuser, a vortex diffuser and a nozzle type diffuser. Comparisons have been made of the following: mean flow patterns, temperature distribution and condensation risk. The vortex diffuser exhibits a higher induction effect than that of the nozzle type diffuser. However, the air speed generated by the vortex diffuser is generally lower than that of nozzle type diffuser.
Usually, the performance of fan-coils is defined and measured in the laboratories only through thermal quantities. However, comfort conditions within a room depend also on the air flow pattern determined by the appliance. Therefore, an experimental procedure to evaluate the fluid dynamic performance of fan-coils has been developed.
The study of the flow in a room cooled by a fan-coil pointed out how the form of air flow and comfort could be influenced by the characteristics of the cold jet blowing out. It is based both on practical experiment and on numerical simulation using CFD code. Combining these methods allowed a large number of configurations to be studied, in association with different conditions for the appliance. Using the results in combination enabled a relation to be established between the problem data, the device characteristics and the comfort conditions obtained.
In the large space, for example in large-dome, the space is often divided into some zones without partition walls for air conditioning. In this case the following are problematic, The first problem is that it is difficult to control the temperature of the target zone considering the influence by the supply air temperature in the adjacent zone for air conditioning. The second problem is that it is difficult to set the temperature sensor for air conditioning control at the location in which the temperature means the average temperature in the target zone.
This paper presents an original air conditioning concept and design development elaborated for a large arena, designed to accommodate the indoor sporting events during the 2000 Olympic Games in Sydney, Australia. An air conditioning system, which provides a great level of flexibility and economical operation, has been developed and its performance studied in detail by the use of our computational fluid dynamics (CFD) software.
In this paper the experiences carried out in a large church of Bologna equipped with a floor radiant panels heating plant are presented. High intensity air flows were measured not compatible with thermal comfort. Experimental data will form the basis for understanding and controlling thermal instabilities in very high halls.
This paper presents a way of ventilating a large room so that the room can be divided into different zones by temporary vertical walls (canvas, plastic sheets etc) and with no physical ceiling. Different activities, like welding, painting or mechanical assembly, can go on inside each of these zones, unaffected by each other, as long as pollutants are extracted through designated extract openings in the outer walls. These inner, temporary walls need only reach from say 3 - 4 metres above the floor and up to some metres above the pollutants' height of equilibrium.
In predicting the thermal environment of an indoor space affected seriously by the outdoor weather like an atrium using natural ventilation, it is essential to grasp the impact of the external outdoor weather precisely. This report describes the result of the analysis of the outdorr and indoor region including solar radiation analysis considering the date and hour, latitude and longitude taking the atrium under construction in Kyoto as an example.
For a large-scale building complex planned to be built in urban area, airflow around buildings and airflow inside a ventilated atrium of the building complex were estimated by CFO (Computational Fluid Dynamics) simulation, and wind and thermal environment were evaluated. The accuracy of CFO simulation was assessed by comparison with wind tunnel experiment. It was found that CFO tends to underestimate the air velocity near the ground surface compared with the results of wind tunnel experiment.