Heat transmission through walls with slotted steel studs.

An insulated wall can be supported internally by thin steel studs. There will be extra heat loss caused by the metal U-studs, but slitting the web of the U-studs perpendicular to the heat flow direction reduces this heat loss. Calculation of the heat transmittance is a difficult numerical problem due to the high ratio of thermal conductivity between the insulation and the steel. This study presents result of calculations in three dimensions. The proper choice of the numerical mesh is discussed. Simplified equations for the U-factor are derived and implemented ill a computer program.

To storm or not to storm: measurement method to quantify impact of exterior envelope airtightness on energy usage prior to construction.

The purpose of this project was to devise a simple, experimentally validated method for quantifying the energy impacts of exterior envelope air leakage. Four full-size exterior envelope test specimens, two opaque wall systems and two fenestration systems, were built for determining simultaneous conductive and convective heat loss. The two opaque clear wall sections were metal-faced sandwich panel and cold formed steel frame.

Effects of layered soil on basement heat transfer.

This paper presents a numerical model to investigate the foundation heat transfer from conditioned basements when the ground is composed of multilayered strata with different thermal properties. The model is used to determine the thermal performance of several basement insulation configurations under both steady-state and transient conditions. It is found that the nonhomogeneity of the soil significantly affects the heat transfer from uninsulated basement walls rather than the basement floor or insulated basement walls.

Four year on site measurement of heat flow in slab on ground floors with wet soils.

This paper outlines the methods and results of a four-year project that measured heat flows through two uninsulated slab-on ground floors on nominally wet soils. One floor was on peat soil, the other on clay, and water table depths were 0.5 m to 1.0 m through most of the year. Heat fluxes were measured over the whole floor using heat flux transducers (HFT) at the concrete floor surface, and temperatures were measured by thermocouple, continuously for four years. The soil conductivities and soil temperatures were measured daily at 11 positions near one edge of the floors.

Moisture in the roofs of cold storage buildings.

The low-slope roofs of ten cold storage buildings in the Dallas area were examined visually and thermo graphically (Tobiasson and Korhonen 1985) from above and below. Two inch (51 mm) diameter cores were taken to verify infrared findings and to determine moisture contents for estimating wet thermal resistances (Tobiasson et al. 1991 ). Twelve inch (0.3 m) square specimens of many of the insulations were removed for laboratory studies of their thermal properties and structure.

Case study - ice dam remediation for Northeast ski area condominiums.

This is a case study describing the procedures for locating, prioritizing, and repairing the causes of ice dam formation at a complex of over one hundred Northeast ski-area condominiums. The testing, performed on four typical units, was commissioned by the Owners Association to prove the feasibility of preventing ice dam formation without replacing all of the existing roofs and to determine the costs of this approach. Ice dam formation is one of the predominate problems for buildings in cold climates.

Decision making on the indoor environment and building envelope of Canada's Library of Parliament.

A year-long monitoring program was undertaken at Canada's Library of Parliament to answer the following:

Thermal performance of a low cost sustainable wall construction system.

Loose-fill pumice, fly ash, and sawdust have been used to construct insulated walls for retrofit or new construction of small residential buildings. Pumice in sandbags was demonstrated as exterior insulation for an existing adobe house in New Mexico. Such houses are rarely insulated because of the cost and difficulty of providing exterior insulation. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, folded as it is filled to form the shape of the wall. Other materials could also be used.

Computer simulation of window condensation potential.

Condensation on windows creates obscured view, can cause building damage, and may lead to mold growth and poor indoor air quality. The Canadian Standards Association (CSA) has developed new procedures to evaluate window condensation potential, using a combination of computer simulation and testing. This paper summarizes results of a study into various aspects of computer simulation related to the evaluation of condensation potential. These findings were used to assist in the development of the CSA procedures.

Pages