In insulated structures, air voids and cracks allow for airflows driven by temperature differences, i.e., natural convection. The airflow paths often exist in structures built with bad workmanship, but sometimes even with the best workmanship they are difficult to avoid. Air paths within new types of loose-fill insulation may also occur. For horizontal structures, critical channel flow Rayleigh numbers can be identified for the onset of convection.
Airflow in buildings is one of the major factors that governs the interaction of the building structure with the mechanical system, climate, and occupants. If the airflow at any point within a building or building assembly can be determined or predicted, the temperature and moisture (hygrothermal or psychometric) conditions can also be determined or predicted. If the hygrothermal conditions of the building or building assembly are known, the performance of materials can also be determined or predicted.
Air leakage and duct wall conduction in forced air distribution systems often waste 20% to 40% of the energy used to condition residences in hot, humid climates. The simulation of these forced air distribution system leakages, their attendant uncontrolled airflows within the building system, and their consequential energy uses may be achieved by treating building spaces as pressure vessels (nodes) that are interconnected with the forced air distribution system, the outdoors, and each other through the basic laws of pressure and airflow.