Details of the first-round retrofits at Twin Rivers

Details the retrofits at Twin Rivers, grouped into packages A,B, C and D. A,B and D reduced heat flow through attic and basement. B limits the amount of air infiltration from crack openings, especially round windows and doors, by the addition of Vinyl foam weatherstrips, caulking of window and door frames and adjustment of ill-fitting casements.

Instrumentation for monitoring energy usage in buildings at Twin Rivers.

The measurement systems used at Twin Rivers for determining energy usage are described. These include a weather station, three different systems for the measurement of temperatures and energy-related events in a house, a tracer-gas based air infiltration measurement system and infrared thermography

Combined thermal and air leakage performance of double windows

Notes heat flow through double windows due to temperature difference and air infiltration have usually been calculated separately. Tests combined effect of air pressure and temperature difference on three double hung prime windows in combination with various storm windows. Found that calculation of infiltration and transmission losses separately gives higher heating requirements than necessary and that air leakage increases with temperature differential. An overall heat transfer coefficient is determined

The prediction of ventilation rates in houses and the implications for energy conservation

Developes mathematical model of air infiltration based on crack flow equations. Describes measurements made on test house. Shows that actual pressure distributions in walls deviate considerably from values in guidebooks. Finds background leakage area of house by pressurizing house with electric fan and measuring pressures. Suggests two distributions for leakage areas. Measures infiltration rate using helium tracer gas, recording temperature and pressure differences. Concludes that comparison between prediction and experimental results is encouraging.

Ventilation research in occupied houses

Gives results of measurements of air-change rates and heat loss in occupied and unoccupied houses on two sites, one exposed and the other sheltered. Observations of the wind pressures on the houses and of the window-opening habit of the occupants are discussed. These are used in conjunction with the results of a regional survey of the temperatures maintained and the window-opening habits in local authority houses to extend the application of the results of other housing.

Wind loading on tall buildings-further results from Royex house.

Reports measurements made of wind pressures on a multi-storey building in London. Autocorrelations and power spectra were computed for the 48 pressure transducers and showed noticeable fluctuations in the pressures on the windward face, Possibly caused by a cushioning effect in front of the building "leaking" away at regular intervals. Mentions effect of the permeability of building. Comparisons made with wind tunnel tests improved when surrounding buildings were taken into account. Recommends design gust durations for various sizes of building.

Wind pressure in buildings including effects of adjacent buildings.

Reports wind tunnel tests made on model building. Wind pressures on the models were measured using several manometers in holes on the windward side and a single manometer on the leeward side atwind speeds of approximately 35 feet and 45 feet per second. Single models and single models with a shielding building at varying distances were tested, and pressure distribution found.Comparison with full-scale tests indicates the general form of pressure distribution is the same but pressure reduction on leeward side is greater in full-scale test.

Determination of the ventilation rate in a series of social houses

Describes the determination of infiltration rates for houses in Seneffe. Gives infiltration rates for individual rooms, found using O2 as tracer gas, and recording wind speed and direction. Determines global air renewal rate using N2O as tracer gas, by injecting gas through ventilators into all rooms and measuring concentration in each room. Calculates global concentration from individual measurements.

Comparison of measured and computer-predicted thermal performance of a four bedroom wood-frame townhouse.

Measurements of the dynamic heat transfer in a four-bedroom townhouse were made under controlled conditions in a large environmental chamber to explore the viability of a computer program developed at N.B.S. labelled NBSLD for predicting heating and cooling loads and inside temperatures. Test house was factory-produced, of modular design and lightweight (wood) construction. Tests were performed with simulated outside summer, winter and autumn diurnal temperature cycles. Inside temperature was maintained at 75 f and the activities of a six-member family were simulated.

Pressure difference across windows in relation to wind velocity

States that it is usual to assume a certain pressure difference across a window for a given wind velocity. Describes method of recording and instrumentation used to record wind speed and direction and pressure difference across two windows. Gives results of measurements showing dependence of pressure on winddirection. Shows that stack effect, even in buildings of moderate height, may be of sufficient importance to require a different allotment of heating capacity between lower and upper floors.