Energy performance standards regarding air infiltration of buildings in Switzerland.

The Swiss performance standard for energy conservation in buildings SIA 380/1 is explained. This standard leaves air infiltration and other detail decisions to planners if minimum performance levels are met. Calculation procedures for heat balances based on a standard occupancy are described. Tools to achieve optimum space heating and ventilation rates are explained. Instrumentation for checking the thermal performance of the house in operation is defined.

Air quality issues in ventilation standards.

Ventilation standards in buildings are receiving increased attention because of energy conservation and indoor air quality. An important example of this is the current ASHRAE Standard 62-1981, "Ventilation for Acceptable Indoor Air Quality." This standard contains two distinct procedures that can be used to set ventilation rates. The first is a prescriptive specification that mandates ventilation rates for particular building types. The second is a performance specification that uses target concentrations of indoor contaminants as the basis for deciding the adequacy of ventilation rates.

Review of building airtightness and ventilation standards.

Increased attention to the reduction of energy consumption in buildings and greater awareness of the need to maintain acceptable standards of indoor air quality have led to the development of new or revised standards of building airtightness and ventilation requirements. In this review of the existing standards of twelve countries, an attempt has been made to compare their main features and criteria. In many cases, direct comparison is not possible because of different ways of expressing the significant parameters.

Description of ASHRAE's proposed air tightness standard.

ASHRAE is preparing a standard which addresses the maximum air leakage associated with good construction. This standard, 119P, links Standard 90, which addresses energy conservation in new residential construction, and Standard 62, which specifies the minimum acceptable ventilation to achieve adequate indoor air quality. Within Standard 119P there is currently a classification scheme that groups building tightness into categories depending on envelope leakage, floor area and building height.

Building regulations. Bauvorschriften.

Energy-saving measures vary according to canton in Switzerland. Mentions the building regulations on air infiltration.

Planning recommendations in the work of the SIA on Standards. Plannungshilfmittel im Normenwerk des SIA.

Describes some of the planning recommendations of the Swiss SIA that touch on the subject of air infiltration.

Indoor air pollution by building materials

Due to better insulation and improved airtightness of doors and windows, the supply of fresh air entering a room has been greatly reduced. This in turn causes an increase in the amount of pollutants emitted by different insulation and building materials. Measurements of the formaldehyde concentration in newbuildings have shown that the admissible limits are still exceeded even after a year. Stricter regulations limiting the emissions of pollutants are therefore urgently necessary.

Minimum ventilation requirements and health criteria for products used indoors

A minimum ventilation rate of 25 m3 per person per hour or 1.5 air changes per hour for homes in the Netherlands is discussed. Difficulties in stimulating awareness of adequate ventilation amongst residents in homes with low ventilation rates of 0.5 to 1 ach is covered.

Domestic ventilation - an international comparison Beluftung von Wohneinheiten im internationalen Vergleich

Compares in tables international requirements for housing regarding ventilation requirements of the entire dwelling, plus kitchen, bathrooms and W.C.s, living rooms and bedrooms. Discusses them. Examines the efficiency of ventilation openings and the requirements made on them. Discusses air flow through a house and the effect of wind forces. Notes how effective pressure difference is affected by the distribution of joints and air leaks.

Analysis of low particulate size concentration levels in office environments

Simulation methods and test results are presented here to confirm projections of actual total suspended particulate (TSP) concentration levels for representative office buildings, with particular emphasis on the 0.3 to 5 micron particulate si