AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

office building

A wind tunnel and full-scale study of turbulent wind pressures on a tall building

Describes method for simulating natural wind boundary layer in a conventional, short working section, aeronautical wind tunnel. Boundary layers, which may be as thick as one-half of the working section height are generated by spires at the working section inlet. This approach is used to measure mean wind pressures and pressure spectra on a model of a tall building in downtown Montreal. Measurements are repeated using the long roughness fetch technique for boundary layer generation and results from the two methods compared.

Infiltration tests at Ringway House, Basingstoke

Describes the results of an investigation carried out to determine the rate of fresh air infiltration that is experienced during the winter in a modern air conditioned office building. Six different methods were employed to estimate the rate of infiltration through the building, four by direct measurement and two by calculation. The methods of direct measurement were,tracer gas decay, measured air flow through one floor, measured air flow through one air conditioning unit and measured change on power demand.

Ventilation measurements in the Norris Cotton Federal Office Building in Manchester, NH

Reports measurements of ventilation rate in specially designed low energy office building. Air change rates were measured using sulphur hexafluoride as a tracer gas and air samples were analyzed for carbon dioxide. Gives tables of results. Discusses analysis of ventilation from CO2 data. Concludes that most of the spaces in the building were operating at or above recommended levels.

A study of the natural ventilation of tall office buildings.

Reports a theoretical study of natural ventilation made jointly by HVRA (UK) and Institute for Public Health Engineering TNO (Netherlands). Uses analogue and digital computers, and results so derived were used to produce a design method suitable for rapid assessment of the natural ventilation of projected buildings. Shows this method to be quicker, cheaper, and more accurate than the crack method (measured leakage at windows and doors) or the air change method.

Pages