Advanced fabric energy storage (Termodeck)

                  

Decrease of radon exposure by continuously adjusted and controlled ventilation.

A new mechanical ventilation system which continuously controlled the indoor-outdoor pressure difference was installed in six houses, where the long-term radon levels ranged from 670 to 3 080 Bq/m3. When the new system had operated for several months, the indoor radon levels decreased to levels from 120 to 600 Bq/m3 , the effective dose reductions being from 40 % to 88 %.

Culturable and total fungi in dust accumulated in air ducts in single family houses.

Fungal spore content in dust accumulated in air ducts was investigated in 24 mechanically ventilated single-family houses of which 15 had also a central air heating system. Dust was collected from the ducts simultaneously with cleaning of the ventilation systems. Besides spore concentrations and flora of culturable fungi, total fungal spore concentrations were determined in dust samples by the aqueous two phase technique and spore counting with epifluorescence microscopy.

System safety analyses of the performance of mechanical ventilation systems - the quantitative approach.

A method for estimating the reliability of mechanical ventilation systems in dwellings hasbeen developed. The analysis is based on component level reliability models interconnectedby so called fault-tree schemes. A simplified model for maintenance is included. Theanalysis procedure is applied on an central exhaust ventilation system and on a central supplyand exhaust ventilation system with heat recovery. For each system, three different qualitystandards have been defined and combined with three levels of maintenance. Work has alsobeen done on collecting relevant input data, e.g.

IEA Annex 27: comparison of performances of different ventilation systems in similar dwellings.

The main goal of IEA Annex 27 "Evaluation of ventilation systems" is to develop tools toevaluate ventilation systems in an objective way in terms of indoor air quality, energy,comfort, noise, life cycle costs, reliability and other building related parameters.To check the developed tools some measurements in real dwellings are necessary. Thedevelopment of the tools is in its final stage. During the AIVC conference some of these toolswill be presented. The indoor air quality tool is not yet ready.

Design of low energy office buildings combining mechanical ventilation for IAQ control and night time ventilation for thermal comfort.

The design of low-energy office buildings requires specific attention to an energy efficient concept for providing good indoor air quality conditions. With this respect, mechanical ventilation shows undeniable advantages: it can be optimally controlled (infrared detection, CO2 control,...), heat recovery is applicable, outdoor noise and pollution penetration can be minimised. Another crucial challenge in low-energy office buildings is avoidance or, if possible, the minimisation of active cooling needs.

Pages