Natural vs. Mechanical Ventilation. A Tool to Help Making a Choice

This paper describes the development of a simplified tool which should be used at the early design stage for predicting air ventilation rates in a building. The method is based on the assumption that the air flow rate may be calculated as a function of two independent parameters. The first, called effective pressure difference, takes into account the local weather data, surrounding terrain, and building typology. The second is the overall building permeability, and accounts for permeable components (geometry and permeability), including vents.

System safety analysis on the performance of mechanical ventilation systems.

System safety of the performance of mechanical ventilation systems can of course be analysed by means of general methods for system safety analysis. Such methods are used a lot in industrial practice, especially in manufacturing industry. However applications on ventilation systems are more or less non-existing today. This paper summarises today's methods for system safety analysis and shows possible future ways of applying the methods on performance analyses of mechanical ventilation systems.

Evaluation of ventilation system in very low energy houses.

Since 1985 more than 170 very low energy houses, all of the same type and structure, were built in the Flemish Region, Belgium. Because conduction losses are very low, mean Urn-value 0.30-0.35 W/(m².K), ventilation losses become very important, up to 45% of the heat losses if no heat recovery is utilised. Three of the houses were monitored in detail for energy consumption, energy and ventilation efficiency. All houses are equipped with the same ventilation system: balanced mechanical ventilation with heat recovery.

Application of the tracer gas techniques for the assessment of ventilation indexes in real buildings.

The work presented in this paper is aimed at the definition of tracer gas experimental procedures for measuring the air change rate, the age of air and the air change efficiency in real buildings under mechanical ventilation conditions. The measurement procedures, based on the decay method, were validated in a special experimental chamber and implemented in two rooms of a building under real operating conditions. Measurements of volumetric flow rate through the air ducts of two buildings, performed by means of the constant emission rate method, will be shown and commented.

Application of a passive tracer gas technique in naturally and mechanically ventilated school buildings.

The homogeneous emission passive tracer gas technique is described. This technique relies on an even distribution of constant tracer gas emission rate within the object to be measured, so that the emission rate per volume unit is constant. The local steady state concentration of the tracer gas is directly proportional to the local mean age of air and the emission rate per volume unit.