The ambiometer is a tool that allows both the recording of physical parameters of comfort and sensations of the occupant.The method developed is based on field investigations of four components of comfort : thermal, acoustic, visual and olfactory components : the experiment comfort parameters are recorded with the Ambiometer and the occupant gives his own feeling on each comfort parameter and on overall comfort.A database including those physical and perceptive parameters of comfort has been made, information was collected from about sixty offices.
The experimental investigation of airflow performance in a ceiling slot-ventilated enclosure under an isothermal condition was the aim of that study. Air-flow characteristics have been analyzed via experimental data then compared to literature theoretical expressions.
The results will be used in design guidelines of ventilation system for controlling indoor environment.
For the restoration of the historic fortress of Kufstein, the high humidity problems encountered have required special investigations : the capillary water up-take characteristics of the wall stones and identification of the ventilation deficiencies have been studied.
Results show that a controlled ventilation system may help to reduce the problems associated with humidity and condensation.
An effective sensor for thermal comfort index is necessary for a successful comfort index-based HVAC control system. A comfort sensor with a new structure is proposed in this paper. This instrument consists of an equivalent temperature sensor, a relative humidity sensor and a temperature sensor.
Simulations show that the suggested PMV and SET sensor can have a good measurement of PMV, but for SET more research is needed.
The dispersion of contaminants in an office environment has been investigated. The first experiment was made in a full-scale typical office equipped with two workstations located in the middle of the room and separated by a low-level partition, and the second experiment took place in a room separated in two halves with a low level partition, with one workstation at each corner. A constant injection of tracer gas allowed the measurement of the concentration of contaminant in the chamber for both the layouts.
MARSIAN (Modular Autonomous Recorder System for the measurement of Autonomic Nervous System activity) is an ambulatroy measurement and monitoring portable system designed for the evaluation of emotional and sensorial reactions, especially in case of thermal comfort and discomfort.
Smart textiles integrate sensors, and communication system. Its own fibers have an active role of sensing or communication, in addition with its natural mechanical role.
There are 2 kinds of smart clothes :
The use of humidistats to control air conditioners may create mold problems mainly in houses unoccupied for an extended period. This article looks for the best approach to control humidity in empty homes during hot and humid summers. Several solutions are proposed.
Velocity and turbulence intensity profiles of the airflow inside a section of a narrow body (737) aircraft cabin were measured using the particle image velocimetry (PIV) technique.In this paper the measurement technique is described and the results are presented and discussed. The purpose of this study was to provide accurate experimental data for validation of the computational fluid dynamics (CFD) codes developed for this application.
This paper gives an overview of sources of indoor particulate matter (PM) and its effects on occupants. Studies indicate that outdoor PM contributes to indoor PM, yet a large fractionof indoor PM is generated indoors. The ratio of indoor to outdoor PM concentrations (I/O ratio) varies substantially due to different indoor conditions and PM spatial distributions.Real-time investigation using multiple point sampling technique is needed for better understanding of PM spatial distribution.
This paper focuses on the mathematical modeling of dynamic human thermal comfort under highly transient conditions for automotive applications. A combined physiological and psychological modeling approach was taken. First, the transient environmental and human activity data, plus the
clothing insulation data, were used as inputs to a human thermal model to determine the physiological responses for the vehicle thermal environmental conditions. Secondly, a series