TN 70: 40 years to build tight and ventilate right: From infiltration to smart ventilation

As the AIVC was created in 1979, the 40th anniversary of the AIVC was celebrated in October 2019 at the 40th AIVC conference in Ghent. In the context of this celebration, it was decided to publish 2 overview publications:

AIVC's Technical Note 70: 40 years to build tight and ventilate right: From infiltration to smart ventilation

We are happy to announce the release of AIVC's Technical note #70: 40 years to build tight and ventilate right: From infiltration to smart ventilation!

As the AIVC was created in 1979, the 40th anniversary of the AIVC was celebrated in October 2019 at the 40th AIVC conference in Ghent. In the context of this celebration, it was decided to publish 2 overview publications:

English

40 Years of Modeling Airflows

The modelling of air flows to investigate indoor air quality and energy issues has been a topic at the AIVC for all of its 40 years. Models have been developed that range in complexity from single-zone algebraic expressions that can be calculated by hand to complex multi-zone approaches that integrate contaminant transport and other functions.

Techniques to Estimate Commercial Building Infiltration Rates

The estimation of low-rise, residential building infiltration rates using envelope airtightness values from whole building fan pressurization tests has been the subject of much interest and research for several decades, constituting a major topic of discussion during the early years of the AIVC. A number of empirical and model-based methods were developed, with their predictive accuracy evaluated in field studies around the world.

Probabilistic modelling of wind induced air exchange in buildings

The work presented is the continuation of the research on the probabilistic modelling of air infiltration carried out by the author over many years. The approach has consisted in considering uncertainties coupled to the climatic/environmental input data to the physical models, or to the threshold criteria for a good performance. The concept of risk/reliability evaluation of building/environment system performance was proposed and exemplified for the air exchange model.  

On the contribution of steady wind to uncertainties in building pressurisation tests

This paper analyses the contribution of a steady wind to the uncertainties in building pressurisation tests, using the approach developed in another paper (Carrié and Leprince, 2016). The uncertainty due to wind is compared to the uncertainties due to other sources of uncertainty (bias, precision and deviation of flow exponent).
The main results of this study are:

Experimental study on the in-situ performance of a natural ventilation system with heat recovery

Combining heat recovery with natural ventilation is a relatively new topic of significant academic and commercial interest. The present study shows the performance of a recently developed Passive Ventilation system with Heat Recovery (PVHR) installed in a primary school building.

Natural Pressure Differential – Infiltration Through Wind Results of a Long-Term Measurement

Wind pressure and thermal forces are driving forces for pressure difference on the building envelope. In European and German standards infiltration is calculated using wind speed, temperature difference and wind pressure coefficients result-ing from upstream and downstream flow on the building envelope. This long term measurements shall present measured pressure differences on the building envelope in comparison to those calculations.

Natural Pressure Differential – Infiltration Through Wind Results of a Long-Term Measurement

Wind pressure and thermal forces are driving forces for pressure difference on the building envelope. In European and German standards infiltration is calculated using wind speed, temperature difference and wind pressure coefficients resulting from upstream and downstream flow on the building envelope. This long term measurements shall present measured pressure differences on the building envelope in comparison to those calculations

Simplified Methods for Combining Natural and Mechanical Ventilation

In determining ventilation rates, it is often necessary to combine naturally-driven ventilation, such as infiltration, with mechanical systems. Modern calculation methods are sufficiently powerful that this can be done from first principles with time varying flows, but for some purposes simplified methods of combining the mechanical and natural ventilation are required—we call this “superposition”. An example of superposition would be ventilation standards that may pre-calculate some quantities within the body of the standard.

Pages