Preliminary analysis of U.S residential air leakage database v.2011

Air leakage and other diagnostic measurements are being added to LBNL’s Residential Diagnostics Database (ResDB). We describe the sources of data that amount to more than 80,000 blower door measurements. We present summary statistics of selected parameters, such as floor area and year built. We compare the house characteristics of new additions to ResDB with prior data.

Simple error reduction in tracer-gas field-measurements of air handling units

Tracer gas measurements are an unparalleled means of measuring air recirculation, leakage, and air flow rates in air handling systems [1-5]. However, such measurements are subject to significant measurement uncertainty in field conditions. A common problem is imperfect mixing of tracer gas.

Development of Infiltration Modeling Parameters for a SIPs Building

Reduction of infiltration in the Equinox House, a residence under construction in Urbana Illinois, has been characterized through a series of blower tests as different joints and seams in the building were sealed. Equinox House is constructed with 30 cm thick SIPs (Structural Insulation Panels) wall and roof panels consisting of a Styrofoam core and oriented strand board sheathing on interior and exterior surfaces. Blower door tests were performed as each type of seam in the house was sealed.

Effect of Party Wall Permeability on Estimations of Infiltration from Air Leakage

The importance of reducing adventitious infiltration in order to save energy is highlighted by the relevant building standards of many countries.  This operational infiltration is often inferred via the measurement of the air leakage rate at a pressure differential of 50 Pascals.  Some building codes, such as the UK’s Standard Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and environmental properties of a dwelling.  The

Air Tightness of New U.S. Houses: A Preliminary Report

Most dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems. Consequently, quantification of envelope air-tightness is critical to determining how much energy is being lost through infiltration and how much infiltration is contributing toward ventilation requirements. Envelope air tightness and air leakage can be determined from fan pressurization measurements with a blower door. Tens of thousands of unique fan pressurization measurements have been made of U.S.

Analysis of U.S. Residential Air Leakage Database

The air leakage of a building envelope can be determined from fan pressurization measurements with a blower door. More than 70,000 air leakage measurements have been compiled into a database. In addition to air leakage, the database includes other important characteristics of the dwellings tested, such as floor area, year built, and location. There are also data for some houses on the presence of heating ducts, and floor/basement construction type. The purpose of this work is to identify house characteristics that can be used to predict air leakage.

Field Validation of Algebraic Equations for Stack and Wind Driven Air Infiltration Calculations

Explicit algebraic equations for calculation of wind and stack driven ventilation were developed by parametrically matching exact solutions to the flow equations for building envelopes. These separate wind and stack effect flow calculation procedures were incorporated in a simple natural ventilation model, AIM- 2, with empirical functions for superposition of wind and stack effect and for estimating wind shelter.

Heat Recovery in Building Envelopes

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial.

The use of blower door data.

The role of ventilation in the housing stock is to provide fresh air and to dilute internally-generated pollutants in order to assure adequate indoor air quality. Blower doors are used to measure the air tightness and air leakage of building envelopes. As existing dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems, accurate understanding of the uses of blowerdoor data is critical. Blower doors can be used to answer the following questions:.

Heat recovery in building envelopes

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load.

Pages