AIVC - Air Infiltration and Ventilation Centre

Search form


You are here


displacement ventilation

Comparison of measured and simulated performance of natural displacement ventilation systems for classrooms

Children spend the majority of their weekdays in classrooms that often have low indoor air quality and limited financial resources for the initial and running costs of mechanical ventilation systems. Designing effective natural ventilation (NV) systems in schools is difficult due to the intense use of the classroom spaces and the dependence of NV on building geometry and outdoor conditions. Building thermal and airflow simulation tools are fundamental to predict NV system performance in the design phase.

Dynamic performance of displacement ventilation in a lecture hall

An accurate temperature gradient calculation is essential for displacement ventilation (DV) system design, since it directly relates to the calculation of the required supply air flow rate. Inaccurate temperature prediction can cause the poor thermal comfort and w sizing of the ventilation and cooling systems.

Investigation of The Combined Effect of Indoor Air Stability and Displacement Ventilation on Pollutant Transport in Human Breathing Microenvironment

The ventilation system removes pollutants effectively, and the resultant vertical temperature difference in the room greatly affects the indoor air distribution. A reasonable air distribution system is essential to provide a satisfying indoor air quality (IAQ) for the occupants, of which air quality in the breathing microenvironment plays a major role in occupant health, as they are exposed to this region directly.

Influence of office layout and ceiling height on vertical temperature gradient in office rooms with displacement ventilation

An accurate temperature gradient calculation is essential for displacement ventilation (DV) system design, since it directly relates to the calculation of supply air flow rate. Several simplified nodal models were developed and implemented in the various building simulation programmes in order to estimate the temperature stratification in rooms with displacement ventilation. However, the most commonly used models do not count the types and locations of the typical heat loads in rooms with displacement ventilation.

Thermal Comfort and indoor air quality in Drøbak Montessori School – A case study of Norway’s first plusenergy school

Drøbak Montessori lower secondary school is Norway’s first plus-energy school and also the first school built after the Norwegian Powerhouse-concept, This concept implies that the building shall produce more renewable energy during the lifetime of the building, than used for materials, production, operation, renovation and demolition.  

Contaminant stratification in displacement ventilated spaces - a two zone model approach. Model prediction compared to experimental data

Displacement ventilation (DV) is an alternative to conventional mixing ventilation in various types of rooms. DV is superior to mixing ventilation when it comes to removing contaminants and surplus heat in a room if designed and applied correctly. In the design process of a space with DV it is necessary to have design methods and simulation tools that can predict the vertical contaminant stratification that arise.

Impact of Clothing, Breathing and Body Posture on the Shaping of a Thermal Plume above a Human

The impact of clothing, breathing and body posture on the thermal plume above a thermal manikin was investigated. Measurements of air velocity and temperature above the manikin were performed at four different heights above a sitting and a lying manikin. The results obtained from tests above the sitting manikin show an inverse proportion between the thermal insulation of clothing and the air velocity in the thermal plume. Air velocity in the thermal plume with the breathing function switched on equalled 90-98% of the values obtained for non-breathing experiments.

Modeling human exposure to particles in indoor environments using a drift-flux model

This study developed a drift-flux model for particle movements in turbulent indoor airflows. To account for the process of particle deposition at solid boundaries in the numerical model, a semi-empirical deposition model was adopted in which the sizedependent deposition characteristics were well resolved. After validation against the experimental data, the drift-flux model was used to investigate human exposures to particles in three normally-used ventilation types: mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD).

Numerical Simulation of Thermal Comfort Degree in Radiant Floor Cooling Room

As a comfortable and energy-efficient air conditioning system, the application of radiant floor heating system is increasing greatly used in the north of China. Now, more and more people begin to be aware of the problem of thermal comfort degree in radiant floor cooling room. This study aims at developing a radiant floor cooling system using the existing radiant floor heating system. Unlike an all-air cooling system, the radiant floor cooling system could remove the cooling by convection and radiation.

Comparison of displacement ventilation and mixing ventilation systems with regard to ventilation effectiveness in offices

Air quality in offices depends on the ventilation system ability to remove contaminants from the occupied zone. In a low polluted building air quality mainly depends on the human presence and carbon dioxide is normally used as indicator of human bioeffluents.