AIVC - Air Infiltration and Ventilation Centre

Search form


You are here


carbon dioxide

Demand control ventilation using CO2.

Carbon dioxide (CO)-based demand controlled ventilation (DCV) is increasingly used to modulate outside air ventilation based on real-time occupancy. Its use could potentially become as common as thermostatic control is today. This article summarizes the current state of the art in CO 2 -based ventilation control including a brief discussion of the technology used, its reliability and how it is best applied. Like any control approach, the success of a C02-based DCV application is dependent on how it is engineered and installed.

Experience curves for energy technology policy.

The book discusses issues raised by the "experience effect", such as price-cost cycles, competition for learning opportunities in the market, risk of "technology lockout" and the effects of research, development and deployment policies on technology learning. Case studies illustrate how experience curves can be used to set policy targets and to design policy measures that will encourage both investment in and use of environment-friendly energy technologies. Low-cost paths to stabilising CO2 emissions are explored.

Baseline indoor air quality pollutant characterisation in five United States schools.

This paper summarizes baseline results from the U.S. Environmental Protection Agency's (EPA) school demonstration studies. Indoor pollutants of concern were formaldehyde, sum of targeted volatile organic compounds o:VOC), carbon monoxide (CO), particulate matter less than 2.5 microns (PM2.5), particulate matter less than 10 microns (PM10), and bioaerosols (bacteria, fungi, and thermophiles). The five schools presented here had no significant indoor air quality problems. Locations of these schools were distributed throughout various climate zones in the United States.

Demand controlled ventilation in schools - energetic and hygienic aspects

In this study, we investigated the indoor air quality (IAQ) in classrooms with exhaustventilation systems and in naturally ventilated classrooms. In the latter, we found peak CO2-concentrations of more than 4000 ppm. 1500 ppm was exceeded during 40 to 86% ofteaching time, dependent on class size. The windows were opened rarely in winter which ledto low mean air exchange rates of 0.20 0.23 h^-1. The operation of mechanical ventilationsystems improved IAQ considerably. Peak CO2-concentrations decreased to less than 2500ppm. 1500 ppm was exceeded for only 7 to 57% of teaching time.