Occupancy estimation based on CO2 concentration using dynamic neural network model

Demand-controlled ventilation has been proposed to improve indoor air quality and to save energy for ventilation. It is important to estimate occupancy in a building precisely in order to determine adequate ventilation airflow rates, especially when people are the major source of indoor contaminants such as in office buildings. In this paper, we investigate occupancy estimation methods using a dynamic neural network model based on carbon dioxide concentration in a space.

Air Stuffiness and Air Exchange Rate in French Schools and Day-Care Centres

A pilot survey was undertaken from September 2009 to June 2011 in 310 schools and day-care centres distributed in all regions of France including overseas departments. This experimental survey was carried out as part of the preparation of the mandatory control of indoor air quality in public buildings. Three parameters were measured in 896 classrooms or child playrooms: benzene, formaldehyde and carbon dioxide (CO2). The last enables the determination of degree of air ‘stuffiness’ during children occupancy as well as the night-time air change rate.

Ventilation Strategies in School Buildings for Optimization of Air Quality, Energy Consumption and Environmental Comfort in Mediterranean Climates

This study copes with the problem of ventilation in existing educational environments in terms of indoor air quality (AIQ), comfort and energy consumption. In accordance with international regulations, densely occupied environments such as school classrooms need high air change rates in order to provide sufficient fresh air. Nevertheless, in Italian schools, it is rare to see mechanical ventilation systems or natural systems that are mechanically controlled. This means that it is necessary for the users to control air changes by opening or closing the windows.

Indoor Air Quality in U.K. School Classrooms Ventilated by Natural Ventilation Windcatchers

The provision of good IAQ in schools is important both for the health of students and in maximising educational achievement. It is, however, common for school classrooms to be significantly under-ventilated and this can lead to high levels of CO2 and other pollutants. Natural ventilation offers the potential to improve IAQ within schools whilst, at the same time reducing running and maintenance costs. Accordingly, this article examines a natural ventilation strategy based on the use of a roof mounted split-duct Windcatcher ventilator. Here, 16 U.K.

A Review of CO2 Measurement Procedures in Ventilation Research

It is widely recognised that the carbon dioxide (CO2) concentration level inside a building is a reflection of the indoor air quality in that building. In most buildings, occupants are a major source of CO2 through exhalation. It is generally accepted that the concentration of CO2 varies with location (horizontal and vertical) within an enclosed space and this can impact on the variation of indoor air quality within the space. Hence, measurement errors related to CO2 sampling strategies in a space are important as they can lead to uncertainties in the mean concentration for the space.

VENTILATION CONDITIONS AND THE RELATED SYMPTOMS IN SELECTED INDOOR ENVIRONMENTS IN A UNIVERSITY

Limited data are available for understanding indoor environmental quality (IEQ) and the related healtheffects in schools in China.

INDOOR AIR QUALITY AND THERMAL ENVIRONMENT OF ELEMENTARY SCHOOLS IN WINTER IN TOHOKU DISTRICT OF JAPAN

This study aims at investigating the actual conditions of indoor environment in schools in order to obtainfundamental information for proper ventilation design for buildings. Indoor environment of two newelementary schools in Tohoku district of Japan was investigated for a week in the winter of 2005.Temperature and humidity, concentrations of carbon dioxide (CO2), ventilation airflow rates,concentrations of chemical substances, and the opening condition of the windows and doors weremeasured and recorded in the three classrooms of each school.

RELATIONSHIPS BETWEEN CARBON DIOXIDE CONCENTRATION AND PRESENCE OF TUNNEL SECTION OF THE HIGH-SPEED TRAIN PASSENGER CABIN IN KOREA

In this study, we monitored the carbon dioxide (CO2) concentration in a high-speed train passengercabin by the in-situ non-dispersive infra-red (NDIR) method in order to investigate the effects of variousfactors, such as number of passengers and the presence of tunnels on the CO2 concentration levels.We found that the CO2 concentration was strongly related with the number of passengers andcorrelated with the presence of tunnel regions. The CO2 concentration increased with increasingnumber of passengers and increasing tunnel residence time.

ANALYSIS OF INDOOR AIR QUALITY IN HIGH-SPEED TRAIN PASSENGER CABIN IN KOREA

The indoor air quality management of the public places is gaining wide attention in Korea, because theindoor air quality of the public places are obliged to satisfy the guidelines suggested by Korean Ministryof Environment. According to this regulation, the railroad stations are regarded as public places whilethe passenger cabin of train is excluded. However, because the passengers spend more time in thepassenger cabin than in the stations, the indoor air quality management of the passenger cabin is moreimportant.

The outdoor air ventilation rate in high-rise residences employing room air conditioners

This paper reports mainly on field studies were indoor overnight CO2 levels are monitored along with outdoor ventilation rates in bedrooms where room air conditioners are employed.The results of laboratory experiments using two typical RACs (room air conditioners) are also reported and discussed.

Pages