Predicting the position of the smoke layer interface height using NFPA 92B calculation methods and a CFD fire model.

NFPA Standard 92B presents computational methods for determining the position of a smoke layer in a large-volume space. Although NFPA 92B is a guide to smoke management design, the methods have been adopted, with certain modifications, by model building codes and are mandated for use in atriums and large-volume spaces. This paper makes use of a recently developed CFD fire model to assess the NFPA 92B calculation methods. A total of 13 simulated tests were conducted.

Contaminant and heat removal effectiveness and air-to-air heat/energy recovery for a contaminated air space.

Measured contaminant and heat removal effectiveness data are presented and compared for a 3: 1 scale model room, which represents a smoking room, lounge, or bar with a two dimensional airflow pattern. In the experiments, heat and tracer gases were introduced simultaneously from a source to simulate a prototype smoking room. High-side-wall and displacement ventilation schemes were investigated, and the latter employed two different types of ceiling diffuser, low velocity slot and low-velocity grille.

Performance of heat recovery in passive stack ventilation systems.

The large heat loss from Passive-stack ventilation (PSV) systems quite often makes natural ventilation systems unattractive and it is therefore desirable to implement heat recovery in PSV stacks. As the stackpressure is usually about a few Pascal, it is crucial that the heat recoveryunit used in a PSV system produces even lower pressure loss, which is extremely difficult to achieve with the conventional plate heat exchangers. This work is concerned with an a low pressure-loss heat recovery device based on heat pipes.

NatVent(TM): Overcoming technical barriers to low-energy natural ventilation in office-type buildings - an overview.

This paper gives an overview of the European NatVent® project on'Overcoming Technical Barriers to Low Energy Natural Ventilation in Office Type Buildings in Moderate and Cold Climates'. The project was targeted at countries like the UK with low winter and moderate summer temperatures where summer overheating from solar and internal gain can be significantly reduced by low-energy design and good natural ventilation.

A holistic approach to a new superstore environment for the next millennium.

A concept design is proposed for a new generation of superstores, which addresses the global problem of Carbon Dioxide emissions and the demand of retail traders for increasing economies in energy. The new superstore building has been engineered from the ground up to incorporate the current best practice in environmental design. With application of suitable energy conservation technologies it is proposed that this approach will provide a retail environment fit for the next millem1ium and achieve a 50% reduction in Carbon Dioxide emissions over a conventional supermarket.

A lighting, thermal and ventilation (LTV) design tool for non-domestic buildings in tropical and subtropical regions.

The paper reports on progress to date on the development of a model for predicting energy use and the effect of conservation strategies in non-domestic buildings in the tropic and subtropics. This model considers lighting loads (L), both artificial and daylight, thermal loads (T) and ventilation effects (V). It is hoped, that when completed in late 1998, the model will provide a Lighting, Thermal, and Ventilation (LTV) advocacy tool for use in the early stages of the design processes of engineers and architects. This will provide vital feedback to the early design decisions.

Simulation of the cooling effect of the night time natural ventilation: a 3D numerical application to the "Maison Ronde" of Mario Botta.

The present research applies the N3S 3D finite element CFD code to the air flow simulation on a well-known dwelling building located in South of Switzerland, the " Maison Ronde " of the architect Mario Botta. The summer night refreshing effect is examined when crossing ventilation due to the wind creates indoor air motion and for cooling walls and ceilings surfaces. To be realistic, the simulation takes simultaneously into account the three main aspects of the problem: - determining boundaries conditions.

Energy comfort 2000 - A THERMIE demonstration project of eight passive and low energy non-domestic buildings.

Energy Comfort 2000 is a THERMIB supported Target project in which seven non-domestic buildings have been designed, built and are being monitored. An eighth building was designed but unfortunately has not finally been built. All are Passive and Low Energy buildings, designed to avoid or minimise the use of air-conditioning, by using the architectural design and construction of the building to produce adequate internal comfort conditions. Overall energy consumption is calculated to be less than 50% compared with traditional buildings and early monitoring has confirmed these predictions.

Hybrid ventilation in a hospital building.

The use of air solar collector realised on the north facade of a new hospital building in Rome is hereby described. The integration of solar and structural element has been studied during the design phase; the development of air gaps integrated within enclosures is related to the possibility to activate both natural (ejecting indoor air outside) and forced (preheating outside air incoming to the air handling units) ventilation. The energy gained by the solar elements has been evaluated.

Pages