Modelling energy use in UK buildings: statistics showing the way forward.

The present Government has a target for reduction of the UK's carbon dioxide emissions of 20% of 1990 levels by the year 2010, which is in fact greater than the legal commitment set at the Kyoto summit on climate change in December 1997. Energy use in buildings accounts for approximately half of tl1e UK's annual carbon dioxide emissions and thus a reduction in the energy used in buildings is vital for this target to be achieved. A detailed knowledge of how energy is currently used is essential for assessing the potential for reducing the UK's C02 emissions.

Numerical simulation of contaminant distribution around a modelled human body: CFD study on computational thermal manikin - Part II.

The rising stream around a human body attributable to metabolic heat can carry contaminants from the floor level to the human breathing system. Thus, the quality of the breathing air greatly depends on the concentration distribution in the lower part of the room and the characteristics of the local air motion around the body. In this paper, a modeled human body (computational thermal manikin) is placed in a room that is air-conditioned with a displacement ventilation system.

Instrumentation and measurement of airflow and temperature in attics fitted with ridge and soffit vents.

This study established a research facility where airflow velocities, temperature, and differential pressures could be measured at the ridge of an attic. Following the construction of a test building, sensors were constructed, calibrated, and installed inside the attic. Paired tests were performed for three different ridge vent treatments; two were rolled type vents and one was a baffled vent.

Roof ventilation to prevent problematic icings at eaves.

Attic ventilation 1/150 and 1/300 rules of thumb were established to avoid problems from indoor moisture. In cold regions another strong reason to ventilate roofs that slope to cold eaves is to prevent the formation of problematic icicles and ice dams. Building heat, not the sun, is responsible for the large icings that cause such problems, and roof ventilation is a direct and effective way of solving them. The authors have instrumented buildings to determine attic ventilation needs to minimize icings and have developed design guidelines for natural and mechanical ventilation systems.

CFD simulations of the effects of HVAC-induced flows on smoke detector response.

Rapid activation of fire protection systems in response to a growing fire is one of the important factors required to provide for life safety and property protection. Airflow due to the heating, ventilating, and air-conditioning (HVAC) system can significantly modify the flow of smoke along the ceiling and must be taken into consideration when a particular system is designed. At present, the standards used to guide the design of fire protection systems contain very little quantitative information concerning the impact of airflow produced by HVAC systems.

Measuring adjacent building effects on laboratory exhaust stack design.

Current methods for designing exhaust stack height and exit velocity are based on avoiding contamination of the roof, walls, and nearby ground surface of the building on which the stack is located. Usually, no account is taken of the effect of adjacent buildings that add turbulence and increase dispersion if they are located upwind and may be contaminated themselves if they are downwind of the emitting building.

Performance evaluation and design guidelines for displacement ventilation.

This paper evaluates the performance of traditional displacement ventilation systems for small offices, large offices with partitions, classrooms, and industrial workshops under U.S. thermal and flow boundary conditions, such as a high cooling load. With proper design, displacement ventilation can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and foot level, and a low percentage of dissatisfied people.

Numerical simulation of laboratory fume hood airflow performance.

A three-dimensional computational fluid dynamics (CFD) analysis has been used to predict airflow patterns in laboratory fume hoods. The simulation includes bypass fume hood primary operational features including the top and bottom bypasses, front airfoils, and rear-slotted baffles. All results were validated experimentally, and the simulation was found to adequately predict fume hood airflow patterns. The results indicate that fume hood flow patterns are highly dependent on inlet flow boundary conditions so that the computation must include the near field room airflow.

Infiltration load in cold rooms.

A two dimensional model was developed to predict the infiltration load to a cold room through its doorway. The governing equations were derived and transformed into dimensionless form. The model showed that the infiltration load to a cold room depends on three dimensionless parameters: the Grashof number of the cold room, the aspect ratio of the room (height to width), and the opening ratio (height of doorway to height of the room). 1\ finite difference technique with a control volume approach was used to solve the governing equations.

Vented and sealed attics in hot climates.

Sealed attic construction, by excluding vents to the exterior, can be a good way to exclude moisture-laden outside air from attics and may offer a more easily constructed alternative for air leakage control at the top of residential buildings. However, the space conditioning energy use and roof temperature implications of this approach have not been extensively studied. A computer modeling study (Rudd 1996) was performed to determine the effects of sealed residential attics in hot climates on space conditioning energy use and roof temperatures.

Pages