Building airtightness standards.

Reviews the existing standards of the AIC participating countries for whole buildings, windows, doors and building sections. Comments on the factors that should be taken into account in the application and future development of airtightness requirements, including climate, sources and severity of indoor pollution, ventilation requirements, existing practices, cost and overall impact of such controls on energy conservation.

The influence of air leakage on the condensation behaviour of lightweight roofs.

The theoretical background, admittance measurements and experimental work on interstitial condensation in lightweight roofs caused by air leakages is discussed. Describes a theoretical model of condensation behaviour taking into account moisture transfer by air flow as well as diffusion. Gives the air flow admittance for various roofing materials, ceiling systems and different roof-sections. Experimental results agreed well with the theoretical model.

The choice of airtightness and ventilation system for single family houses.

Facts and ideas are presented to improve cost effective designs for airtightness and ventilation systems. Schematically alternative measures to save energy are presented. An investigation of the rate of ventilation in 25occupied houses is described, using pressurization, tracer gas and measurements of air flow through exhaust air terminal devices. At a mechanical ventilation rate of 0.25 ach, the measured total ventilation rate averaged 0.29 ach (minimum 0.12 and maximum 0.50). Further results are given for 5 more recently constructed houses.

Tightness of pre-fabricated outer walls and its influence on heat demand in apartment dwellings.

Uses air leakage measurements in laboratory and site studies in Poland to define a power law relationship between pressure acting across the opening and flow rate, and explains the effects on heat loss calculations. Results of indoor climate measurements over a two year period are given. Describes use of a computer model to calculate heat demand of different ventilation systems. Real heat requirement is about 40% larger than the calculated values.

Indoor air quality and minimum ventilation rate.

Reviews the most important sources of indoor air pollutants, and means of measuring the contamination of room air by persons (carbon dioxide and odours). Lists some recommendations for minimum ventilation rates, based on the results of experimental investigations.

Vapor barrier paints.

This report addresses the factors causing water vapour problems and provides insights into the solutions available with particular emphasis on vapour barrier paints. Concludes that 1. moisture flow in structures is a dynamic, systemic process of multiple variables, and therefore requires an integrated approach for management, 2. retrofit applications offer an entirely different set of physical and economic considerations than are found in new construction and therefore require a different approach, 3.

Interior storm windows.

This report focuses on the repair and upgrading of existing windows to acceptable levels of air and thermal resistance. Improvements to existing windows can be effectively achieved for as low as 25 to 50 cents per square foot by caulking and weatherstripping the primary window and then installing an inexpensive interior storm window. 27 interior storm window products are examined and details of design, operation and performance are given. Air infiltration test results are also examined and the thermal performance of each window system in terms of whole house energy savings is evaluated.

Indoor air quality research in Canada.

Indoor air quality research in Canada is outlined. 17 indicators are being considered in drawing up air quality criteria and guidelines for residential application. They comprise: carbon monoxide, carbon dioxide, radon and radon decay products, formaldehyde, aldehydes, nitrogen dioxide, microbiological agents, moisture, particulates, ozone, polycyclic aromatic hydrocarbons, chlorinated hydrocarbons, lead, pesticides, aerosols, synthetic fibres and asbestos, and oxides of sulphur.

Airtight houses. Timber frames for thermal comfort.

Describes construction of timber-frame housing to high level of airtightness. A target level of 0.4 ach at 50 Pa was set. At this level, total air control provides an extremely high level of comfort by eliminating draughts and by supplying precise amounts of fresh air where required. An air and vapour barrier was installed within the house structure.

An improved multiple tracer gas technique for the calculation of air movement in buildings.

Describes a series of tests carried out in two interconnected environmental chambers, to determine the accuracy of airflows calculated from tracer gas measurements using a new rapid sampling system. The system is capable of measuring 3 tracer gases simultaneously.

Pages