Reducing energy consumption in an existing shopping centre using natural ventilation

The energy consumption needed for establishing a good indoor climate in shopping centres is often very high due to high internal heat loads from lighting and equipment and from a high people density at certain time intervals. This heat surplus result in a need for cooling during most of the year, typically also during the winter, and often the needed cooling is provided by a mechanical ventilation system with integrated mechanical cooling.

Hybrid ventilation – the ventilation concept in the future school buildings?

Hybrid ventilation (HV), as a combination of automated natural ventilation (NV) and balanced mechanical ventilation (MV), provides opportunities to use the advantages of both ventilation systems during the seasons in order to reduce energy demand and at the same time obtain comfortable indoor climate.

Intelligent energy consumption in low energy housing

BR10 requires that all new residential constructions should be built as low energy housing. In order to meet these requirements residential buildings must be equipped with far more complex technology, than conventional housing. This, for example, could be a combination of mechanical balanced ventilation, natural ventilation, heat pumps, solar heating, solar cells or automatic sunscreens.

A Proposal of Hybrid Ventilation System Using Stack Effect in High-rise Buildings

This study proposes the hybrid ventilation system and its design methods for high-rise buildings. The proposed hybrid ventilation system uses natural driving power for ventilation based on air flow in the whole building and indoor and outdoor pressure distributions. Furthermore, it solves the troubles of the conventional natural or mechanical ventilation systems. This paper presents theories and a process for duct design for natural ventilation which forms the basis of a hybrid ventilation system in high-rise buildings.

Hybrid Ventilation for Multi-Zone Buildings - Development of Optimal Control Strategies through Experiments and Dynamic Modelling

Hybrid ventilation represents an interesting option both to guarantee good air quality for indoor environments and to reduce the energy consumption related to the mechanical motivation of the air.

Hybrid Ventilation System Simulation for Several Cities in Turkey

Hybrid ventilation systems combine the superior properties of natural and mechanical ventilation systems to reduce energy consumption. In this study, hybrid ventilation simulations were performed for several cities in Turkey, which have different climate conditions. Matlab/Simulink was utilized to perform the simulations. The results of these simulations were compared with that of regular air conditioning units in terms of energy consumption.


Until the end of 90-ties all dwelling buildings in Latvia were equipped with mandatory natural ventilationsystems with stack effect. Nowadays in many cases in dwellings there are only exhaust mechanicalventilation but air tight windows prevent natural air intake. Such systems result in bad IAQ.

Effects of outdoor air conditions on hybrid air conditioning based on task/ambient strategy with natural and mechanical ventilation in office buildings

The aim of this study is to clarify the effects of indoor environmental characteristics of hybrid - natural and mechanical - air conditioning systems in office buildings during intermediate seasons. The other objective was to obtain design data.

Forcing natural ventilation resources in a hybrid ventilated facility at KTH

In this paper a method to solve a design problem of hybrid ventilation system is proposedby building stack pressure around the ventilator using a flat bed, glass-shielded rectangular solarchannel. In support of this idea a CFD (Computational Fluid Dynamics) simulation based ontheoretical calculation is done. Here, natural convection and a k-e two-equation turbulence modelwere used together with the finite volume method.

On the IAQ Characteristics of Child Care Centers in the Tropics Arising from Different Ventilation Strategies

The IAQ characteristics and the corresponding health symptoms and thermal sensation of the occupants of child care centers in Singapore under 3 different ventilation strategies are reported. The 3 child care centers studied were centrally air-conditioned and mechanically (ACMV) ventilated (Case A), naturally ventilated (Case B) and hybrid (natural and air-conditioning) ventilated (Case C).