Reduction of air infiltration due to window and door retrofits in an older home.

Reports a project to assess the value of weatherstripping windows and doors in a 30-year old home. Describes house and retrofitting technique using stainless steel weatherstrips. Air infiltration rates before and after retrofit were measured using three independent methods, tracer gas dilution using SF6,pressurization/depressurization for the whole house and depressurization of individual windows. Finds that air-change-rate for the whole house was reduced by 10-14.7%giving a predicted reduction of 15.5% for a complete retrofit which would result in an energy saving of 4-6%.

Residential energy requirements and opportunities for energy conservation.

Reports study of energy consumption of typical house in Texas. Computer-based model was used to simulate house under different conditions of insulation, infiltration, shading and operation. Gives tables of results of variation in energy use. Finds comparison between "wasteful" and "conservative" home. Shows 56% decrease in annual energy consumption.Concludes that energy saving measures would be cost-effective.

Experimental studies in natural ventilation of houses.

Describes experimental studies of the natural ventilation of four similar houses with different ventilating systems. Describes houses and gives experimental procedure and results of measurements of air-change-rates using hydrogen as a tracer gas.Shows variation in air-change-rates are due mainly to changes in wind speed and that wind direction and temperature difference are secondary factors. Estimates rate of heat loss as a functionof wind speed. Discusses relationship between measured pressure differences and wind speed and direction.

Style and vintage as determinants of energy-costly faults in U.S. residential housing.

States that much of the heat loss in American houses can be traced to generic faulty details in design and construction. Discusses style of housebuilding in the United States. Notes vast majority of American houses were built of wood. gives a broad classification of typical houses into seven types. Notes variation in energy performance with climatic region. States intention to undertake case studies to assess the energy performance of each type.

The variation of infiltration rate with relative humidity in a frame building

Describes investigation of air infiltration in a house using chlorothene as a tracer gas. Gives table of the data collected. Reports the unexpected result that infiltration rates could bereduced by increasing inside relative humidity. Suggests this is due to changes in hygroscopic building materials, especially wood. Concludes that increasing relative humidity from 20 to 40%could save from 5 to 15% on fuel costs. This analysis does not take into account the energy used to evaporate humidification water.

Natural infiltration routes and their magnitude in houses part 2.

Describes a simple pressure method for measuring the air tightness of small buildings. It measures the leakage rate from all apertures in the external envelope simultaneously, from which total leakage area of openings could be inferred. Site measurements have shown that obvious sources of leakage like doors and windows account for only the minor part of total leakage area in the average dwelling. Results from 25 dwellings show no trend of leakage area per unit of gross floor area.

Natural infiltration routes and their magnitude in houses-part 1.

A supply of fresh air is necessary in any dwelling to ensure a comfortable, safe and hygienic environment, but the heat loss to this air, during the heating season, may represent a substantial proportion of the total heat loss. This points to the need forgreater control of domestic ventilation, either by using a mechanical system or by better design for natural ventilation. This paper touches upon both of these possibilities. Gives simple method for assessing approximately the possible reduction in heat loss achieved by the use of a mechanical ventilation system.

Infiltration - pressurization correlations: detailed measurements on a California house.

Describes detailed study of infiltration rates measured with a tracer gas and air leakage rates obtained from fan pressurization in small, 3 - bedroom California house as part of a larger study. Finds surface pressure measurements are an essential step in process of finding a correlation between natural air infiltration and air leakage by pressurization. Measurements also show significant duct leakage and air flow between attic, living space and crawl space.

Effect of fluctuating wind pressures on natural ventilation.

Describes research project which aimed to quantify the difference between actual dynamic ventilation rates and natural ventilation rates predicted using a steady state model. 

Why airtight houses? Varfor tata hus?

Explains why house external shell and ventilation system must be treated as integral elements of a total system. Explains, using an analogous water system, why air leakage through shell is greater using push-pull ventilation than when using extract ventilation and why houses should be airtight.

Pages