The calculation of house infiltration rates.

Describes how in 1960-62 National Research Council of Canada conducted air infiltration measurements on 2 single-storey houses using helium as a tracer gas, followed in 1967-68 by measurement of air leakage characteristics using house pressurisation technique. Describes procedure developed from these tests for calculating infiltration rates. Gives equations for calculating infiltration due to stack effect and that due to wind action. Gives equation for combined effect.

Schools: Air tightness and infiltration.

Reports pressurization tests on eleven schools both with the air handling system on and with it off. Obtains air leakage through components of the building by comparing overall leakage rates before and after sealing each component. Uses leakage rates to calculate air infiltration using a simplified model of a school building. Finds that infiltration caused by stack effect is significant even for a single-storey building.

Analysis of factors affecting the extent of air leakage of one family house. Analys ar ofrivillig ventilation i smahus

Reports theoretical and experimental calculations of heat balance of 5 houses. Discusses the extent of air leakage and various factors contributing to heat losses, particularly effects of wind and winter temperatures. Normal air leakage is 0. 5-0.7 air changes/h, mainly through chimneys, air outlets, window, and door cracks. Air leakage of floor, door, and roofs is 0.1-0.2 air changes/h. in winter, temperature differences have the same influence on ventilation as wind velocity. Measurements in attics show 3 air changes/h. This is largely dependent on wind velocity.

Air infiltration measurements in a four-bedroom townhouse using sulphur hexafluoride as a tracer gas.

Reports measurements in title. House was contained in environmental chamber with control over inside and outside temperature with essentially no wind velocity. Observes familiar correlation between inside-outside temperature difference andinfiltration rate, and effect of sealing doors and ducts underconditions of negligible wind velocity. Compares different methods of collecting air samples for analysis and compares SF6 measurements with air exchange rates imposed on the house by means of a centrifugal blower.

Calculation method for the natural ventilation of buildings.

Reviews mechanism of natural ventilation. Provides mathematical expressions for wind pressure distribution, stack effect, and air flows. Treats air leakage component's characteristics, both individually and connected in series or parallel. Employs model simplification to 1 and 2 Junctions. Illustrates a 1-Junction model calculation. Finds calculated and measured values agreed well for a large factory hall.