Development of approach to optimization of building envelope design in aspect of thermal comfort and energy use

This study examined the effect of building envelope on thermal comfort. The effects of key energy conservation measures, such as window/wall ratio, transmittance of fenestration glass and shading devices, were studied. The output from EnergyPlus was use to predict their influence on thermal comfort. Standard energy conserving measures proposed by ENVLOAD to reduce indoor thermal discomfort and cooling energy consumption were examined.

Modelling of urban canyon: analytical and experimental remarks

The urban climate of high-density areas is often affected by an increase of the air temperature known as Urban Heat Island (UHI) phenomenon. 
UHI is strongly influenced by the solar reflectance of conventional materials used for building envelope and urban coatings, i.e. streets and square pavings. 
The present work proposes an original method to predict the temperature of both facades and local air mass on urban scenarios. The effect of changes on coatings may also be estimated.  

Energy retrofit of the existing housing stock in England

by space and water heating. The high costs of energy are a national matter not only for their economic and environmental implications, but also because they contribute largely to a social problem, known as fuel poverty. The cost of heating the housing stock is rather high for different reasons, one of each being the heat loss through the building envelope. The thermal performance of existing buildings can be increased in two ways: by adding insulation to external fabric, and by reducing the unintended air leaks of the envelope.

On prediction of the mold fungus formation probability on critical building components in residential dwellings

In buildings, favorable growing conditions for mold fungi can occur and cause fungusinfestation. The danger for the occupants of dwellings lies in the spreading of pathogensthrough microorganisms. Mold fungi can occur not only on the surface of external walls, butalso inside construction parts. A prerequisite for preventing mold fungus is the knowledge ofthe transient building physical boundary conditions under which fungus growth takes place.The decisive parameters of influence like temperature, humidity and substrate have to beavailable over a certain period of time simultaneously.

Impact of Transient Effect on Thermal Performance of Dynamic Insulated Wall

This paper presents an analysis of the transient thermal performance of dynamic insulation. A modelbased on heat transfer through porous media is introduced, considering two types of boundaryconditions: (1) indoor temperature and outdoor temperature are constant; (2) indoor temperature isconstant while outdoor temperature changes. By solving the model numerically, it is found that for thefirst kind of boundary condition, the temperature profile in the wall will reach steady-state within onehour, when the porosity is high.

Energy assessment for a new urban settlement

The paper concerns the definition of guidelines in the design of a new urban settlement, based on system energy utilization and building environmental impacts and sustainability improvement. The study refers to a 160000 m2 area sited on the outskirts of Carmagnola, a city close to Torino, where the municipality decided to locate about 1260000 m3 of commercial buildings: offices, shopping centres, a trade fair area, a cattle market, a multi-hall cinema, hotels, restaurants, industrial sheds.

Airtightness requirements for high performance buildings

International building legislation is setting stronger and stronger requirements for the energy performance of buildings. The most recent example is the Energy Performance of Buildings Directive in the European Union. The improved energy performance of buildings can't be achieved by additional insulation or more effective building systems only. A major influence factor on the energy quality is the ventilation technology and also the airtightness of the building.

Is day natural ventilation still possible in office buildngs with a double-skin facade ?

The efficiency of the natural day ventilation in relation to the double-skin orientation wind speed and wind direction is examined in this paper.

Predicting indoor temperature and humidity conditions including hygrothermal interactions with the building envelope

The hygrothermal behavior of the building envelope affects the overall performance of a building. There are numerous tools for the simulation of the heat and moisture transfer in the building envelope and also whole building simulation tools for energy calculations.

Indoor humidity modeling and evaluation of condensation on interior surfaces

In tropical humid climates, moisture and condensation on walls lead to significant damage of buildings. The purpose of this article is to present a numerical model to improve the prediction of internal humidity in buildings. Thermal simulation codes usually evaluate moisture due only to airflow transfers. The model presented takes into account the moisture transfers between walls and air inside a zone. It allows a forecast of the quantities of liquid condensed on a surface. An experimental comparison is presented to appreciate the improvement of the model.

Pages