Life cycle assessment: A design element for ventilation system selection

A Danish office building designed with a hybrid ventilation system has been compared to a full mechanical ventilation system in the same building. The comparisons include a life cycle analysis (LCA) focussing on CO2 equivalents (CO2equiv.) and life cycle cost (LCC) of the two ventilation solutions. The LCA includes embodied carbon form the ventilation components and operational energy due to heating and electricity. A potential reduction of 32% in the total global warming potential (GWP) was found when using a hybrid ventilation solution instead of a mechanical ventilation solution.

Performance of Roofs Integrated with Phase Change Materials for Reduction the Cooling Load and Overheating Severity in Hybrid Ventilated Classroom, Taiwan

PCM (phase change materials) is an innovative technology and an effective method for improving the thermal mass of buildings owing to it possesses the property of large thermal capacity within a limited temperature range, which is similar to an isothermal energy tank. However, most of the previous studies focused on the combination of PCM and walls that the utilization potential of rooftop is lack of concern though there is a significant amount of heat gains from rooftop.

Constructing a Dual-Index Regulation for the Design of Envelope Performance of Hybrid Ventilated School Building

Responding to the hot humid climate, the Taiwan government expects to broadly install air-conditioning in classrooms to provide a comfort study environment for school buildings and prevent the risk of overheating; therefore, corresponding to the installation of air-conditioning, it is important to draw up the energy-saving strategy while considering the thermal comfort.

Breakthrough of natural and hybrid ventilative cooling technologies: models and simulations

This special issue on Breakthrough of natural and hybrid ventilative cooling technologies: models and simulations, together with the connected issue Breakthrough of natural and hybrid ventilative cooling technologies: strategies, applications and case studies (vol. 16, issue 1), focuses on methods, tools and technologies for reaching the above-mentioned goal through the use of ventilative cooling, i.e. cooling by controlled natural ventilation (CNV). This strategy is one of the most cost-effective alternatives to air-conditioning systems.

The future of hybrid ventilation in office buildings – energy simulations and lifecycle cost

This study presents a comparison of three ventilation systems; automated Natural Ventilation (NV), balanced Mechanical Ventilation (MV) with heat recovery and Hybrid Ventilation (HV) with heat recovery for a new build office building.
The energy demand for heating and electricity as well as the indoor climate of the building were simulated using IESVE. Three key European cities were selected (Copenhagen, Munich and London) in order to investigate the applicability of the principles to different climatic conditions in Europe.

Hybrid ventilation in new and refurbished school buildings – the future of ventilation

More than 64 million pupils spend more time in school than in any other place except home in Europe (European Commission, 2014). The indoor air quality is often a challenge in existing school buildings and the lack of proper ventilation often leads to negative effects like increased absenteeism and sick building syndrome symptoms as well as lowered performance amongst students compared to new buildings.

Heat Recovery Hybrid Ventilation System With a Thermal Storage

A “heat recovery hybrid ventilation system” is the combination of passive stack ventilation and mechanical push-pull ventilation. Two heat storage boxes are connected to the natural EA stack and the underfloor natural OA duct. The alternation is done periodically in a way of that the outdoor air is drawn through one of 2 boxes contains earth tiles and the indoor air is exhausted through the other box.

Ventilation strategies for the deep energy retrofit of a kindergarten

The scientific literature often reports example of educational buildings with extremely poor ventilation performance. An in-field investigation for the environmental and energy assessment of a kindergarten in Milano, confirmed that operable windows were not operated when the average daily temperature dropped below 14 °C, jeopardizing indoor air quality and kids learning performance.

Control of indoor climate systems in active houses

The term of “Active House” recently developed, addressing houses that target a balanced optimization of indoor environmental quality, energy performance and environmental performance. According to the idea of not only being energy efficient and eco-friendly, Active Houses equally focus on indoor environmental qualities, in particular daylight and air. With their tendency towards intensive sun penetration, natural ventilative systems and generally intensive connections to the exterior, Active Houses challenge the balance of technical and individual indoor climate control.

Natural Ventilation Potential in Portuguese Residential Buildings under Winter Conditions – An Opportunity for Hybrid Ventilation

This paper presents a study of the potential for the use of natural ventilation systems in Portuguese multi-family residential buildings under winter climatic conditions. The behaviour of various natural ventilation systems is tested in a standard residential dwelling, using the TRNSYS 15 and COMIS 3.1 software programs. This study leads to the conclusion that the use of hybrid ventilation systems can save a considerable amount of the energy normally spent on continuously operating mechanical ventilation systems.

Pages