Bobo Mingsum Ng, Chris Underwood and Sara Walker
Year:
2009
Bibliographic info:
Building Simulation, 2009, Glasgow, Scotland

A model for simulating clusters of standing column wells (SCWs) for use in geothermal heating and cooling systems is described in this paper. The model is three-dimensional, dynamic and solves the governing equations using a finite volume discretisation scheme with a fully implicit algorithm. The slower-acting field equations are solved using a wider time interval than that used for the faster-acting well equations and the two sets of equations are coupled through the field equation source terms. A groundwater bleed feature is incorporated. The model is applied to two evaluative test cases the first of which involves heating only and the second, heating and cooling. Results of the applications suggest that SCWs can deliver substantially higher rates of heat transfer than conventional closed loop borehole heat exchanger arrays especially when groundwater bleed is operational. An important practical consequence of this is that far less geotechnical drilling is needed when using SCWs than is the case with closed loop arrays.