Li Y, Chen Z, Delsante A
Bibliographic info:
Hong Kong, City University, Division of Building Science and Technology, 2001, proceedings of IAQVEC 2001, "Indoor Air Quality, Ventilation and Energy Conservation in Buildings: Fourth International Conference", held Changsha, Hunan, China, 2-5 October, 2

This paper analyses buoyancy-driven natural ventilation assisted or opposed by winds in a building with thermal stratification. Theoretical analysis shows that the ventilation flow is mainly characterised by two air change parameters, namely a buoyancy air change parameter and a wind change parameter, as well as the ventilation openings. It also shows how the clean zone height is affected by ventilation openings. Our new analysis also reveals that the hysteresis behaviour found when uniform temperature distribution is assumed also exists in buildings with thermal stratification. Our analysis and assumptions were confirmed by a recent laboratory study using a salt bath technique, which was published elsewhere.