AIVC - Air Infiltration and Ventilation Centre

Search form


You are here

Home  |  turbulent intensity

Effects of turbulent air on human thermal sensations in a warm isothermal environment.

Xia Y Z, Niu J L, Zhao R Y, Burnett J, 2000
turbulent intensity | draft sensation | preferred velocity | air movement | thermal comfort | isothermal
Bibliographic info: Indoor Air, No 10, 2000, pp 289-296
Languages: English

Air movement can provide desirable cooling in "warm" conditions, but it can also cause discomfort. This study focuses on the effects of turbulent air movements on human thermal sensations through investigating the preferred air velocity within the temperature range of 26°C and 30.5°C at two relative humidity levels of 35% and 65%. Subjects in an environmental chamber were allowed to adjust air movement as they liked while answering a series of questions about their thermal comfort and draft sensation. The results show that operative temperature, turbulent intensity and relative humidity have significant effects on preferred velocities, and that there is a wide variation among subjects in their thermal comfort votes. Most subjects can achieve thermal comfort under the experimental conditions after adjusting the air velocity as they like, except at the relative high temperature of 30.5°C. The results also indicate that turbulence may reduce draft risk in neutral-to-warm conditions. The annoying effect caused by the air pressure and its drying effect at higher velocities should not be ignored. A new model of Percentage Dissatisfied at Preferred Velocities (PDV) is presented to predict the percentage of feeling draft in warm isothermal conditions.

Related publications

This report summarizes the work of the initial working phase of IEA ECB Annex 62 Ventil
Maria Kolokotroni, Per Heiselberg, Lorenzo Pagliano, Jie Han, Regina Bokel, Peter Holzer, Annamaria Belleri, Denmark
This summary report presents insights on recommendations into how ventilative cooling i
Christoffer Plesner, Flourentzos Flourentzou, Guoqiang Zhang, Hilde Breesch, Per Heiselberg, Michal Pomianowski, Peter Holzer, Maria Kolokotroni, Annamaria Belleri, Denmark
Overheating in buildings is an emerging challenge at the design stage and during operat
Peter Holzer, Theofanis Psomas, Denmark