AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

thermal comfort

Urban Home Ventilation - Ventilation requirements, trends and thermal comfort

Setting sustainable urban development goals and developing energy efficient solutions for buildings are crucial elements of climate action. Urban living is introducing new challenges both for architectural design and technical solutions. Ventilation systems have an important impact both on energy use as well as indoor climate and health in buildings. So, how can we develop good home ventilation solutions fit for urban living?

 

Performance in practice of a ventilation system with thermal storage in a computer seminar room

Computer classrooms present challenges for cooling because internal heat gains higher than typical classrooms. Focused on thermal comfort, this paper presents the results of a field and computational study of a computer seminar room in west England. A mechanical ventilation system with phase change materials thermal storage has been installed in the room to provide thermal comfort and indoor air quality. Monitored data of internal air temperature, CO2 and humidity were analysed and compared with current requirements for indoor air quality and comfort.

Ventilative cooling of a seminar room using active PCM thermal storage

One-year monitoring results of environmental conditions in a UK seminar room where the Cool-phase® ventilation and PCM battery system has been installed indicate thermal comfort and good indoor air quality throughout the year. CFD analysis indicates that air temperature and air distribution is uniform at occupants’ level.

The impact of climate change on the overheating risk in dwellings. A Dutch case study

Overheating in buildings has been identified as an essential cause of several problems ranging from thermal discomfort and productivity reduction to illness and death. Overheating in buildings is expected to increase as global warming continues. The risk of overheating in existing and new buildings can be reduced if policy makers take decisions about adaptation interventions quickly. This paper introduces a methodology for supporting such decisions on a national level.

Reducing thermal discomfort and energy consumption of Indian residential buildings: Model validation by in-field measurements and simulation of low-cost interventions

The study proposes and compares low-cost strategies to improve the quality of existing building stocks, with special regard to a widespread Indian residential typology. A dynamic energy model of this particular local building typology was simulated with Energy Plus software and validated by comparing it with some original in situ measures, recorded by hourly step. The validated model was used to simulate a selection of low-cost and technically simple interventions, whose effects on the energy performance and indoor comfort were compared to the baseline case study.

The effect of cooling jet on work performance and comfort in warm office environment

The aim of our study was to determine the effect of a cooling jet on performance and comfort in warm office environment. We compared cognitive performance, subjective workload, cognitive fatigue, thermal comfort, symptoms, perceived working conditions and perception of airflow in warm temperature (29.5 °C) in two conditions: with and without the jet. Twenty-nine students participated in the experiment in which a repeated measures design was employed. The jet improved the speed of response in a working memory task with increasing exposure time but did not affect other performance measures.

Integrated Solution in an Office Room with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

This work presents an energy assessment of the natural ventilation performance within buildings located on both hot-temperate and mild-temperate conditions such as the existing along the central region of Mexico. With the assistance of a coupled thermalairflow simulation program, simulations are run without and with natural ventilation, respectively. Thereby, the consumption of air-conditioning presented in this region is validated with data from literature when natural ventilation is not applied.

Experimental study of diffuse ceiling ventilation coupled with a thermally activated building construction in an office room

This paper presents and analyses the performance of an integrated system with diffuse ceiling ventilation and a thermally activated building construction. A full-scale experiment is carried out in a hot box with an office setup. The performance of the integrated system is evaluated under different boundary conditions, considering different weather conditions, internal heat loads, TABS activation modes and with/without diffuse ceiling. The measurement results indicate that the diffuse ceiling plays a beneficial role improving thermal comfort in the occupied zone.

Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS

This paper investigates the dynamic cooling performance of a novel system combining natural ventilation with diffuse ceiling inlet and thermally activated building systems (TABS). This system is tested in the lab under three climatic conditions representing typical seasons in Denmark, including a typical winter day, a typical day in the transitional season and a typical summer day. The corresponding dynamic control strategies have been designed for these three cases in the measurements.

Pages