This paper discusses the experimental study of direct delivery of cold air into a full scale environmental chamber using different diffusers, i.e. a multi-cone circular ceiling diffuser, a vortex diffuser and a nozzle type diffuser. Comparisons have been made of the following: mean flow patterns, temperature distribution and condensation risk. The vortex diffuser exhibits a higher induction effect than that of the nozzle type diffuser. However, the air speed generated by the vortex diffuser is generally lower than that of nozzle type diffuser.
The paper presents a mathematical model, implemented in a general computer code, that can provide detailed information on velocity and temperature fields as well as pollutants concentrations prevailing in three-dimensional buildings of any geometrical complexity, for given external meteorological conditions. The model involves the partial differential equations governing flow and heat transfer in large enclosures containing heat sources. Turbulent flow is simulated and buoyancy effects are taken into account.
Using isothermal full-scale experiments and 3-dimensional CFD simulations it is investigated how normal office furniture influences the air movements in a mixing ventilated room. Two different types of inlets are used in the experiments and a set-up with normal office furniture is made. The set-up is simulated with one of the inlets where a volume resistance represents the furniture. The jet under the ceiling is investigated and it is found that the normal office furniture does not influence the air movements in the upper part of the room.
This report characterizes ventilation in residential suites located in ten buildings in major metropolitan areas of Canada. All buildings were between six (6) and thirty-two (32) stories high and were built between 1990 and 1995.
Ventilation in mid- and high-rise residential buildings is a particularly complex issue to investigate and to discuss in a report.
This report answers three key questions: