A minimum ventilation rate of 25 m3 per person per hour or 1.5 air changes per hour for homes in the Netherlands is discussed. Difficulties in stimulating awareness of adequate ventilation amongst residents in homes with low ventilation rates of 0.5 to 1 ach is covered.
The above new building is described. Main features of this building are shade from trees, south windows catch the breeze in summer and insolation in the winter, insulated foundations, roof and wall insulation, solar collectors toprovide all hot water heating and 75% of space heating, thermally massive walls to stabilise temperature, various natural ventilation and air conditioning options, and storm windows. Energy consumption details are given.
Describes measurements made in a real factory building and comparisons with the scale model tests presented in the previous report. The ventilation system of the factory building is a mechanical one with the necessary rate of ventilation designed to be less than that calculated by the conventional method. The parameters studied included air velocities measured with hotwire anemometers at the inlet openings and the temperatures in the work hall itself measured from a crane.
A table is given which compares the performance, construction and function of the various types of window treatment. Aspects covered include sun control, thermal insulation, infiltration barrier, security and privacy, control by static, movab
Treats the causes of deterioration in buildings, thermal bridges, the indoor climate, data for the design and execution of buildings and living conditions in rooms. Section headings are The formation of moulds, Humidity in buildings, The temperature factor, tau, as a criterion of the thermal quality of thestructural elements, Conditions of occupation of buildings, Thermal bridges, Natural ventilation of buildings, Conclusions, Advice.
The prospective study included two groups, a study group, which had retrofitting of their flats, and a control group not exposed to environmental changes in their homes. The results clearly demonstrated a number of positive effects of the replac
Simulation methods and test results are presented here to confirm projections of actual total suspended particulate (TSP) concentration levels for representative office buildings, with particular emphasis on the 0.3 to 5 micron particulate si
The results of our investigations in the Federal Republic of Germany on the Rn-222 and Rn-220 daughter product concentration in dwellings and in the open air are presented. The median Rn-222 concentration indoors was approximately 4 times hig
In Sweden there are two major sources to indoor radon, the building material and radon from uranium rich soils. It is now widely accepted that indoor radon daughter concentration in Sweden, higher than 1000 Bq/m3 is most frequently caused by
In large areas of the Swiss Alps, the high radium content of rocks and soil, which results in high source terms for radon from the ground, may produce considerable indoor levels of radon in dwellings with low air infiltration. During the winter