An innovative approach to better understand hot discomfort, based on the measurement of global human responses, including physiological and sensory indicators - application to end users of mixed mode cooled buildings under tropical climate conditions

Comfort modelling is a critical scientific barrier to reaching better thermal satisfaction in buildings. It allows designers to combine different cooling systems better to target comfortable low-energy buildings in hot and tropical climates. Increasing computer performance offers new perspectives to use more refined thermo-physiological models against traditional normative ones. Also, new types of coupled cooling alternatives arise and set a need for adequate comfort assessment models.

Windows and ceiling fan occupant behaviour model coupling methodology with building energy models, a tropical case study

In this work, we propose a method to couple the behaviour models developed with Python in a previous paper with the dynamic thermal simulation software EnergyPlus, an advanced code used in research and design. The proposed coupling method is applied to the thermal model of an office building situated in the humid tropical climate of Reunion Island after calibrating and validating it with measured temperature and relative humidity data.

Bridging The Mechanical / Enclosure Gap

In the United States, the realm of building enclosure design and commissioning is separate and distinct from the realm of mechanical design and commissioning. This paper will illustrate how and why these disciplines have been historically separated and outline the consequences of this division and describe the opportunity that a closer relationship between the two represents in terms of costs and environmental impact.

Airtightness predictive model from measured data of residential buildings in Spain

The need for airtightness control is a reality given its impact on buildings’ energy use and IAQ. For the past few years, this fact has resulted in energy performance regulations being established in many countries in Europe and North America. However, compliance proof is not always required, and on-site testing is often avoided. In this sense, predictive models have become useful in the decision-making process and to estimate input values in energy performance simulation tools.

Correlation analysis between ACH50 and Air permeability considering the floor area of a residential buildings

Airtightness is presented through various expression according to the standards and measurement methods of each country. To compare the airtightness of buildings of different sizes, ACH50 and air permeability are mainly used to express the airtightness.

Pulse tests in highly airtight Passivhaus standard buildings

Due to the minimal energy requirement, the Passivhaus standard has been widely recognised and adopted to deliver low carbon buildings. To achieve this standard, the thermal and physical properties of the building envelope have to meet a stringent criteria. It has set out the highest requirement for the building airtightness, which requires the envelope to achieve an air change rate less than 0.6 h-1 when the building is subject to a pressure difference of 50 Pa. Building an envelope with such a high level of airtightness can be extremely challenging.

Acoustic method for measurement of airtightness – field testing on three different existing office buildings in Germany

Maintaining the airtightness of building envelopes is a key factor for the energy efficiency of buildings. A fast and reliable detection of leaks plays a decisive role, especially during building renovations. For this reason, work has been done in recent years to apply an acoustic beamforming method that enables the fast, simple, and large-area detection of leaks in building envelopes. This method is based on a microphone array technology and assumes that sound primarily follows the same paths as air through the building envelope.

Airborne transmission of disease in stratified and non-stratified flow

Airborne transmissions take place as a transport of virus or bacteria via the aerosol flow in rooms. The distribution of aerosols tends to be evenly distributed if the flow in the room is fully mixed. The aerosols distribution will be different if the room air is stratified. A vertical temperature distribution may create stratified layers with either lower or higher concentrations of exhalation from the infected person.

Point source ventilation effectiveness in infection risk-based post-COVID ventilation design

Measurement method for ventilation effectiveness, more specifically, for contaminant removal effectiveness with a point source corresponding to infector is analysed in this study with tracer gas measurements and infection risk calculations. Ventilation effectiveness is needed in infection risk-based ventilation design to take into account air distribution methods deviating from fully mixing. Tracer gas measurements were conducted with two source location in six non-residential spaces.

Mitigation of airborne transmission of respiratory viruses by ventilation – past, present and future

The importance of ventilation of spaces for occupants’ health has been known for many years. Ancient Egyptians used natural ventilation to remove dust and thus to reduce respiratory diseases of stone carvers working indoors (Janssen 1999). In the past ventilation has been used to reduce airborne transmission of respiratory generated infectious agents in buildings.

Pages