Although a significant amount of work has been done to elucidate the conditions under which fungi will grow on the surfaces of materials, little information is available that quantitatively relates surface concentrations to airborne concentration and, ultimately, exposure. This paper discusses the impact of relative humidity (RJI), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material.
High outdoor ventilation air requirements can lead to significant increases in building energy use, thermal discomfort, indoor air quality problems, and litigation. Engineers often avoid ground-source heat pumps because of the perception that there are no acceptable methods for conditioning the ventilation air. However, this difficulty is currently a problem with all types of heating and cooling systems. Decisions may be based on system performance at design conditions without regard to seasonal energy consumption.
Part I of this paper discussed the theoretical considerations of creating a nonlinear black box model. In P art II, the constraints on the nonlinear model imposed by the application are discussed followed by presentation of the model structure, training method, input selection, and input transformation. The test results of applying the proposed model with the selected features to five test buildings are discussed next. One of the test buildings (Zachry Engineering C enter) selected for this study was also used in a previous study as a p art of energy prediction competition (Haber!
A building energy management system (BEMS) generally monitors and manages energy usage in commercial buildings. With the ability to monitor a plant and to recall the collected data at a later time, actual building energy performance can be measured and compared with the expected performance. The comparison will help in detecting possible abnormalities with the building energy usage and in identifying opportunities to optimize the building energy performance. In order to predict expected building energy performance, a reasonably accurate building energy model is needed.
Passive cooling strategies can offer significant opportunities for improving the occupants' ambient comfort conditions whilst reducing the energy consumption in hot climates. This is particularly applicable for buildings located in hot/arid regions with large cooling toads due to the use of mechanical systems for space climatization. This research examines the potential of passive cooling strategies in a commercial building located in a typical hot/arid climate of Mexico.