Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 11:12
This report summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-theart of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 11:12
In general, but in particular in nearly zero-energy buildings, there is a very strong tendency to drastically reduce the heating demand. One adverse side effect is that in doing so, it often increases the risk of overheating in summer and shoulder seasons. This is in particular, but not only, the case for lightweight constructions.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 11:12
Computer classrooms present challenges for cooling because internal heat gains higher than typical classrooms. Focused on thermal comfort, this paper presents the results of a field and computational study of a computer seminar room in west England. A mechanical ventilation system with phase change materials thermal storage has been installed in the room to provide thermal comfort and indoor air quality. Monitored data of internal air temperature, CO2 and humidity were analysed and compared with current requirements for indoor air quality and comfort.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 11:00
One-year monitoring results of environmental conditions in a UK seminar room where the Cool-phase® ventilation and PCM battery system has been installed indicate thermal comfort and good indoor air quality throughout the year. CFD analysis indicates that air temperature and air distribution is uniform at occupants’ level.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:25
Research indicates that low-energy dwellings are more sensitive to overheating than regular dwellings. In this research the ventilative cooling potential of low-energy dwellings is considered. A low-energy dwelling based on the Active House concept, “House of Tomorrow Today” (HoTT), has been investigated as representative for low-energy dwellings in general. A computational model of the house was created with the software TRNSYS (in combination with CONTAM) and this model has been calibrated with actual (intervention) measurements in the HoTT.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:22
The increasing number of highly insulated and air tight buildings leads to the concern of indoor environment overheating and related comfort and health issues. This can already happen in a temperate climate as found in the Netherlands. This work studies the ventilative cooling process as a possibility to avoid overheated dwellings. A monitored dutch passive house was modelled in Trnsys and the impact of increasing air flow rates on indoor temperatures was simulated. The most overheated zone was chosen to be analysed.
Submitted by Maria.Kapsalaki on Wed, 02/12/2020 - 13:03
This special issue on Breakthrough of natural and hybrid ventilative cooling technologies: models and simulations, together with the connected issue Breakthrough of natural and hybrid ventilative cooling technologies: strategies, applications and case studies (vol. 16, issue 1), focuses on methods, tools and technologies for reaching the above-mentioned goal through the use of ventilative cooling, i.e. cooling by controlled natural ventilation (CNV). This strategy is one of the most cost-effective alternatives to air-conditioning systems.
Submitted by Maria.Kapsalaki on Wed, 02/05/2020 - 16:44
Ventilative cooling can be used as a passive cooling measure to reduce the cooling energy demand of buildings. It can be used during the day, directly removing excessive heat gains, or during the night (i.e. night flush), in which cold outdoor air flows through the building and cools down the indoor air volume and subsequently the thermal mass of the building. Night flushing reduces the indoor air temperatures at the beginning of the next day and the cooling demand over the day.
Submitted by Maria.Kapsalaki on Tue, 01/28/2020 - 11:57
Low energy buildings are highly insulated and airtight and therefore subject to overheating risks, where Ventilative cooling (VC) might be a relevant solution. VC is an application (distribution in time and space) of air flow rates to reduce cooling loads in spaces using outside air driven by natural, mechanical or hybrid ventilation strategies. Ventilative cooling reduces overheating in both existing and new buildings - being both a sustainable and energy efficient solution to improve indoor thermal comfort (State-of-the-art-review, Kolokotroni et al., 2015).
Submitted by Maria.Kapsalaki on Tue, 01/28/2020 - 11:53
The current development in building energy efficiency towards nearly-zero energy buildings (nZEB) represents a number of new challenges to design and construction. One of the major new challenges is the increased need for cooling arising in these highly insulated and airtight buildings. The cooling demand depends less on the outdoor temperature, and more on solar radiation and internal heat gains. This naturally gives better potential for the use of ventilative cooling technologies, because the cooling need is not only in summer, but actually all year round.