AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

ventilative cooling

Ventilative cooling effectiveness in office buildings: a parametrical simulation

Controlled Natural Ventilation (CNV) is one of the potential most effective passive cooling technique to reduce cooling needs of buildings in temperate-hot climate zones. However, a correct balance amid internal heat capacity, thermal insulation, and net opening area is important to achieve optimal results. The present paper shows results from an original simulation process carried out within the Course “ICT in building design” of the Master degree programme ICT4SS (ICT for smart societies) at the Politecnico di Torino.

Energy analysis for balanced ventilation units from field studies

Balanced ventilation units are well known to provide a sufficient amount of fresh air in residential buildings in a controlled way, without relying on ever-changing naturally driven forces. During colder periods, heat recovery ensures a reduction of the ventilation heating load. Outside the colder periods, recovery is reduced or shut off automatically, providing mechanical ventilative cooling. During warmer periods, the recovery is used again to provide a comfortably cool supply of fresh air.

Freevent : ventilative cooling and summer comfort in 9 buildings in France

Recent studies have shown that ventilative cooling reduces overheating, improves summer comfort and decreases cooling loads. Therefore, it is considered as one of the most efficient way to improve summer comfort. Although, HVAC designers still lack of guidelines to improve the energy and comfort efficiency of their installations.  

Ventilative cooling in a school building: evaluation of the measured performances

The test lecture rooms of KU Leuven Ghent Technology Campus are one the demonstration cases of IEA EBC Annex 62: Ventilative Cooling. This nZEB school building is realised on top of an existing university building and contains 2 large lecture rooms for maximum 80 students with a floor area of 140m² each. An all air system with balanced mechanical ventilation is installed for ventilation, heating and cooling.

Validation of Dynamic Model BSim to Predict the Performance of Ventilative Cooling in a Single Sided Ventilated Room

Ventilative cooling (VC) is an application (distribution in time and space) of air flow rates to reduce cooling loads in spaces using outside air driven by natural, mechanical or hybrid ventilation strategies. VC reduces overheating in both existing and new buildings - being both a sustainable and energy efficient solution to improve indoor thermal comfort. VC is promising low energy cooling technology that has potential to substantially reduce the use of mechanical cooling in airtight and highly insulated buildings.

Status and recommendations for better implementation of ventilative cooling into Danish standards, building legislation and energy compliance tool

Ventilative cooling (VC) is an application (distribution in time and space) of air flow rates to reduce cooling loads in spaces using outside air driven by natural, mechanical or hybrid ventilation strategies. Ventilative cooling reduces overheating in both existing and new buildings - being both a sustainable and energy efficient solution to improve indoor thermal comfort. In new buildings VC, may save cooling energy and thereby make it easier to fulfil future energy legislation for buildings.

Influence of night ventilation on the cooling demand of typical residential buildings in Germany

The current type of construction preferred for new high energy efficient buildings in Germany, featuring highly insulated building components and an almost completely airtight building shell, raises several new challenges with regard to design, construction and use of these buildings. Cooling, in particular, is an issue that gains importance also in the residential sector, in connection with rising temperatures induced by the climate change.

Ventilative cooling in a single-family active house from design stage to user experience

Ventilative cooling through window airing presents a promising potential for low energy houses in order to avoid overheating risks and to reduce energy consumption of air conditioners. This case study aims at describing how ventilative cooling has been taken into account as from the design stage of a low-energy single-family active house located near Paris. Its performance on thermal comfort and air renewal, monitored from both sociological (feedback from a family) and scientific approach, is described and compares these two qualitative and quantitative approaches.

Design and performance of ventilative cooling: a review of principals, strategies and components from International case studies

Overheating is an unwanted consequence of modern building designs and internal gains that will be aggravated by the effects of climate change on local climates within urban and suburban areas. To minimise the energy cost of limiting overheating several different approaches exist for passive cooling dissipation techniques. Free cooling by ventilation, or Ventilative Cooling, (VC), is a generally accepted effective, energy efficient, mitigation strategy to building overheating. There are many factors that influence the design and selection of suitable VC strategies.

Pages