AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

validation

Validation of Dynamic Model BSim to Predict the Performance of Ventilative Cooling in a Single Sided Ventilated Room

Ventilative cooling (VC) is an application (distribution in time and space) of air flow rates to reduce cooling loads in spaces using outside air driven by natural, mechanical or hybrid ventilation strategies. VC reduces overheating in both existing and new buildings - being both a sustainable and energy efficient solution to improve indoor thermal comfort. VC is promising low energy cooling technology that has potential to substantially reduce the use of mechanical cooling in airtight and highly insulated buildings.

Building Envelope Pressure Manipulation for Streamlined High-Rise Buildings

Methods of manipulating building envelope wind pressure distributions for application in the natural ventilation of high-rise buildings are presented using computer simulation methods. CFD was used to simulate the external flow while the multi-zone method was used to compute the flow distribution in the building interior. First, a 2-D CFD study was conducted to explore various techniques of manipulating the building envelope wind pressure distribution.

Numerical simulation on transient accessibility of supply air and contaminant source in ventilated room

The transient accessibility of supply air (TASA) and transient accessibility of contaminant source (TACS) in ventilated rooms are important indices to evaluate the effect of ventilation and the indoor air quality (IAQ). These indices can be measured by experimental method or calculated with computational fluid dynamics (CFD) tools. Compared to the measurement method, the numerical method has a lot of advantages such as fast, flexible and with detailed data. In this paper, the calculation and validation of the TASA and TACS are introduced.

Computational simulations for predicting vertical daylight levels in atrium buildings

This paper investigates the impact of well geometry and surface reflectance on vertical daylight levels in atria with square forms under a CIE standard overcast sky. By reviewing some previous investigations and comparing with scale model measurements the vertical daylight factor calculated using Radiance are validated. More simulated vertical daylight factors for a very wide range of atrium geometries and reflectances are given. From the results the attenuation and distribution of the vertical daylight levels on the wall of a square atrium with different reflectances are displayed.

Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin

To reduce the potential risk of airborne infectious diseases during an outbreak or to detect a chemical/biological release by a terrorist, it is essential to place appropriate chemical/biological sensors in commercial airliner cabins. This investigation studied sensor responses along the length of a fully occupied twin-aisle cabin with 210 seats by using a validated Computational Fluid Dynamics (CFD) program. The results revealed that seating arrangements can make cross sectional airflow pattern considerably asymmetrical.

New EPBD related European standards and their relation to building and HVAC system simulation

In reaction to the European Energy Performance of Buildings Directive (EPBD), existing and newly lanced standard developments by CEN (European Committee for Standardization) were harmonized and synchronized, resulting in a set of about 50 standards addressing different aspects of the EPBD and the implementation of an overall building energy performance calculation method. A few of them address simulation issues: An overview of these is given, focusing on one standard covering system related aspects for buildings with cooling, humidification or dehumidification.

A CFD Model of a Swirl Diffuser for Heating and Cooling Modes

The aim of this study was to develop a simplified CFD model for the inlet jet of a swirl diffuser for the simulation of room airflow patterns. The swirl diffuser creates a complex flow pattern with high induction of room air, thus possessing a challenge for simulation. The studied diffuser was a model intended to be used in large enclosures. The flow pattern was adjustable between two basic modes: radial swirl jet for cooling conditions and compact downward swirl jet for heating conditions. For developing the CFD model, a series of laboratory measurements of the flow field was carried out.

Possible Air Pumping Action in a Room Fire

The air pumping effect of a fire plume, proposed years ago, to give a higher air intake rate through vertical openings in a compartment fire is further investigated in this paper. Equations for the air intake rate through vertical openings found in the literature are reviewed. As most of the reported correlation expressions were derived empirically from experiments, results might be different if the fire geometry, fuel type and ambient conditions are different.

Casthouse Ventilation Design for the Production of Air-Cooled Aluminium Sows

The Aluminerie Alouette Inc. (AAI) smelter in northern Quebec, Canada recently completed a major plant expansion that includes a new casthouse for the continuous production of low-profile, air-cooled aluminium sows. The radiation and convection heat release of 15 MW to the workplace from the aluminium metal solidification and cooling is significantly higher than that experienced in the traditional water-cooled casting process where the majority of the heat is removed by the cooling water.

ZAER: A Zonal Model for Heat Transfer and Air Flow in Unconditioned Buildings - An Experimental Validation

This paper presents a three-dimensional zonal model, ZAER, for heat transfer and air flow calculations. It is based on an intermediate approach between single-air-node and CFD models. The indoor air volume is divided into macroscopic homogeneous zones. Heat and mass balance equations are written for each zone, while the mass flow rates across the interfaces are calculated by power pressure laws. The simulation tool ZAER allows the determination of temperature fields and air flow distributions inside unconditioned buildings, taking into account external boundary conditions.

Pages