Thermoeconomics is a blend of thermodynamics with economics. The thermodynamic analysis uses the second law and the concept of exergy, the measure of usefulness of energy. Economics involves costing exergy flows in life costing techniques. The objective of thermoeconomics is to minimise a cost function, talcing into account capital, maintenance and running costs. Most of these are expressed in terms of thermodynamic variables of the system. This will establish the most cost effective design parameters.
Interest in the UK regarding the design of passively ventilated and cooled buildings has resulted in much work on the thermal performance and likely environmental impact of such buildings. Little work assessing the impact of the passive design approach on the construction process has been undertaken. This issue is examined herein, through the initial development of a methodology quantifying the relationship between passive environmental control (PEC) and the construction process, leading to a means of classifying buildings according to their prefabrication strategy.
The term "buffer room" refers in this context to spaces built between thermally, visually, and acoustically "controlled" indoor rooms and the "no controllable" outdoor environment. Examples of buffer rooms are sunrooms, atria, (enclosed) staircases, and air locks. In a long-term research effort carried out in Austria, buffer rooms were studied with regard to their hygrothermal and acoustical performance within a human-ecological framework.