AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

numerical modelling

Computer prediction of air quality in livestock buildings.

In modem livestock buildings the design of ventilation systems is important in order to obtain good air quality. The use of Computational Fluid Dynamics for predicting the air distribution makes it possible to include the effect of room geometry and heat sources in the design process. This paper presents numerical prediction of air flow in a livestock building compared with laboratory measurements. An example of the calculation of contaminant distribution is given, and the future possibilities of the method are discussed.

Numerical simulation of airflow in a room with differentially heated vertical walls.

Knowledge of room air distribution, including its flow and temperature characteristics, is very important to HVAC engineers. This study numerically predicts the air distribution in a room with differentially heated vertical walls. The Rayleigh number in the room is around 2.6-3x 1010. Time averaged equations of continuity, momentum, and energy are numerically solved by the finite volume method. Three turbulence models, the "standard" k-E model, and two low-Reynolds-number k-E models, are employed to simulate turbulent natural convection in the room.

Advanced feedback control of indoor air quality using real-time computational fluid dynamics.

This paper describes the partial implementation of a novel method of controlling indoor air quality (IAQ) for critical applications. The proposed method uses a numerical modeling technique known as computational fluid dynamics (CFD) for modeling the effect of variable ventilation rates for intelligent and rapid control of air contamination in space. This paper describes how a CFD model is made to run in real time linked to a feedback control loop. The technique was simulated in a graphical programming language.

Pages