Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:14
In recent years, there has been increasing number of cases using the double skin façade to satisfy both the indoor views and energy saving. In summer, the double skin façade has a heat shielding effect by exhausting solar heat through natural ventilation and in winter, in addition to the thermal insulation effect by the air layer, a heat collecting effect of solar heat can also be expected. On the other hand, the natural ventilation performance of the double skin façade in summer strongly depends on the outdoor conditions, making it difficult to achieve a stable heat shielding effect.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 10:56
This paper presents a thermal simulation validation study of the typical precision that a trained thermal simulation engineer can expect to obtain for the simulation of a room connected to a naturally ventilated double skin facade. The open source building thermal simulation tool EnergyPlus is used to predict air and surface temperatures in a free running weather exposed test cell.
Submitted by Maria.Kapsalaki on Thu, 06/19/2014 - 11:19
This paper describes CFD modelling of Double Skin Façades (DSF) with venetian blinds inside the façade cavity. The 2-D modelling work investigates the coupled convective, conductive and radiative heat transfer through the DSF system. The angles of the venetian blind can be adjusted and a series of angles (0, 30, 45, 60 and 80 degrees) has been modelled. The modelling results are compared with the measurements from a section of façade tested within a solar simulator and with predictions from a component based nodal model. Agreement between the three methods is generally good.
Submitted by Maria.Kapsalaki on Tue, 06/17/2014 - 14:41
A universal lumped model is developed with the aim to predict the thermal performance of Double Skin facade. Three modules – ventilation, heat transfer and penetration - are coupled to comprehensively describe the energy and mass transfer processes. The unknown parameters, resistance coefficient and heat convection coefficient, are discussed and estimated. The influences of cavity shading position, cavity depth and ventilation height on energy performances are analyzed at the end of the paper based on the simulation results.
Submitted by Maria.Kapsalaki on Tue, 06/17/2014 - 14:21
Taking into account Mediterranean climate particularities for Barcelona, Spain, a whole year study using TAS simulation software was carried out for a Double Skin Façade corporative office building. It is a typical office building with an extended working hours schedule for acclimatization.
Submitted by Maria.Kapsalaki on Thu, 10/31/2013 - 12:03
When it comes to natural ventilation performance for large space cooling during summer time or intermediate seasons, double skin facade(DSF) integrated with cross ventilation(CV) exhibits more energy efficiency than single-side ventilated DSF. In this case, ventilation performance is remarkably affected by climatic conditions. Therefore, it is important to analyze micro climatic conditions before applying this passive technique.
Submitted by Maria.Kapsalaki on Mon, 10/28/2013 - 11:48
A double skin façade (DSF) aims at reducing heating and cooling loads by taking advantage of daylight and utilizing heated air for space heating. To take advantage of a DSF a sophisticated design is required. In this paper a DSF building that has overheating problems was selected to verify the causes and propose remedial solutions. The problem was verified by analyzing the measured solar radiation, inside and outside temperature and air velocity. The results of the measurement analysis showed that airflow congestion caused overheating inside the building.
Many modern office buildings have highly glazed facades. Their energy efficiency and indoor climateis, however, being questioned. Therefore more and more of these buildings are being built with doubleskin facades, which can provide: a thermal buffer zone, energy savings, wind protection with openwindows, fire protection, aesthetics, solar preheating of ventilation air, sound protection, pollutantprotection with open windows, nocturnal cooling and a site for incorporation of PV cells.
Double skin facades have become a major architectural element in office buildings over the last 15years. A double skin facade can provide a thermal buffer zone, solar preheating of ventilation air,energy savings, sound protection, wind and pollutant protection with open windows and nocturnalcooling. Commercial buildings with integrated double skin facade can be very energy efficientbuildings with all the good qualities listed above.However not all double skin facades built in the last years perform well.