Energy performance prediction of thermoelectric ceiling radiant panels with a dedicated outdoor air system

This paper proposes a dedicated outdoor air system (DOAS) with thermoelectric module radiant cooling panels (TEM-RCP). The DOAS involves the concept of a decoupled system with a parallel sensible cooling unit. This concept implies decoupling of ventilation and air-conditioning functions. The DOAS treats latent loads from outside air intake as a 100 % OA ventilation system. Additionally, a parallel sensible cooling unit, such as ceiling radiant cooling panel (CRCP), generally removes sensible loads.

Evaluation of thermal comfort in an office building served by a liquid desiccant-assisted evaporative cooling air conditioning system

Recent studies examined a liquid desiccant indirect and direct evaporative cooling assisted 100% outdoor air system (LD-IDECOAS) as an energy conserving alternative to conventional air conditioning systems. An IDECOAS was introduced as an environmental-friendly air conditioning system that uses latent heat of water evaporation to cool the process air. Recently, studies suggested the integration of a liquid desiccant(LD) system with an IDECOAS to overcome a cooling reduction in evaporative cooling performance in a hot and humid climate.

Evaluating natural ventilation cooling potentials during early building designs

Natural ventilation (NV) is an efficient way of cooling buildings, and its energy saving potentials however depend on many parameters including local hourly weather and climate conditions, types of ventilations, indoor cooling loads (or heat gains), operating schedules, window types, and opening-wall ratios etc. Determination of the NV flow rate is thus challenging, although there are many empirical equations for different NV strategies, e.g. single-sided and cross-ventilation, considering different driving forces, e.g. wind, buoyancy and a mix of both.

Thermal performance of ventilated solar collector with energy storage containing phase change material

This paper presents a ventilated solar collector with energy storage of fins containing Phase Change Material (PCM) in the air cavity and investigates its thermal performance. The idea is to use PCM in combination with ventilation as a thermal controller of indoor environment and to consequently decrease the building energy consumption both in summer and winter time. The main parts of the solar collector are plate fins with small thickness containing PCM fitted into the ventilation cavity, which is a good way to compensate the low thermal conductivity of PCM.

Will naturally ventilated dwellings still be safe under heatwaves?

Heatwaves are often responsible for many deaths due to high temperature indoors. Energy savings is a key element in building design and refurbishment works to reduce the impact of climate change. Natural ventilation is often promoted as an indoor space cooling solution thanks to its energy saving potential.
The paper deals with prediction of heat-related health risks situations in naturally ventilated dwellings.

Demand controlled ventilation in school and office buildings: lessons learnt from case studies

Demand controlled ventilation (DCV) refers to a ventilation system with air flow rates that are controlled based on a measurement of an indoor air quality (IAQ) and/or thermal comfort parameter. DCV operates at reduced air flow rates during a large amount of the operation time. Due to this decrease, less energy is needed for fan operation and heating/cooling the supply air. However, uncertainty still exists about the IAQ performance and ventilation efficiency in the room, especially at lower air flow rates.

Ventilative Cooling Control Strategies Applied to Passive House in Order to Avoid Indoor Overheating

The increasing number of highly insulated and air tight buildings leads to the concern of indoor environment overheating. This research studies the possibility of applying natural ventilation as a way to avoid high temperatures indoors. A monitored passive house was modelled in ESP-r and the impact of natural ventilation on indoor temperatures was simulated. The multi-zonal energy model was coupled with an airflow network and several control strategies were tested for the openings of the dwelling. Thirteen control settings were simulated.

Airflow Pattern And Performance Analysis of Diffuse Ceiling Ventilation in An Office Room using CFD Study

Diffuse ceiling ventilation uses perforations in the suspended ceiling to deliver air into the occupied zone. Due to the complex geometry of the diffuser, it is not possible to build an exact geometrical model in CFD simulation. Two numerical models are proposed in this study, one is a simplified geometrical model and the other is a porous media model. The numerical models are validated by the full-scale experimental studies in a climate chamber.

Analysis And Comparison of Overheating Indices in Energy Renovated Houses

The scientific literature offers a number of methods for assessing the likelihood of overheating in buildings. The paper calculates eight welldocumented indices for four representative family houses, from moderate and temperate climates, under different renovation processes (66 variants), with the use of multi-zone energy software. In two out of four cases, the calculation included passive cooling measures for optimization purposes (shading, ventilative cooling).

Ventilation performance and indoor air pollutants diagnosis in 21 French low energy homes

Ventilation’s historical goal has been to ensure sufficient air change rates in buildings from a hygienic point of view. Regarding its potential impact on energy consumption, ventilation is being reconsidered today. An important challenge for low energy buildings lies in the need to master airflows through the building envelope. Data collected from controls in 1287 recent dwellings shows us that 68 % of the dwellings don't respect the French airing regulation.

Pages