Ventilative cooling and energy use in supermarkets

Supermarkets are a category of non-domestic buildings with high energy use because of their operation. Recent work indicates that by improvements to the energy delivery systems through which internal environmental conditions are maintained such as thermal properties of external envelope including airtightness, HVAC systems and lighting, substantial energy savings can be achieved. Work to date has focused on typical supermarkets while the present paper examines frozen food supermarkets which include more refrigeration cabinets and therefore result in higher energy use per sales floor area.

Stack driven ventilative cooling for schools in mild climates: analysis of two case studies

This paper presents two case studies of stack driven ventilative cooling systems implemented in kindergarten schools located in the mild Subtropical-Mediterranean climate of Lisbon, Portugal. Both systems rely on stack driven natural ventilation supplemented by a larger, single-sided ventilation opening to be used in the warmer months. In both systems air enters the rooms at a low level, directly in front of the heating passive convector systems, and is exhausted in the back of the room, through a chimney.

Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including Phase Change Materials

Night sky radiative cooling technology using PhotoVoltaic/Thermal panels (PVT) and night time ventilation have been studied both by means of simulations and experiments to evaluate their potential and to validate the created simulation model used to describe it. An experimental setup has been constructed at the Technical University of Denmark, where the outside PVT panels are connected through a storage tank to in-room radiant ceiling panels. The radiant ceiling panels include phase change material (PCM) and embedded pipes for circulating water.

Evaluation tool of climate potential for ventilative cooling

The new initiatives and regulations towards nearly zero energy buildings forces designers to exploit the cooling potential of the climate to reduce the overheating occurrence and to improve thermal comfort indoors. Climate analysis is particularly useful at early design stages to support decision making towards cost-effective passive cooling solution e.g. ventilative cooling.

Overview of provisions for ventilative cooling within 8 European building energy performance regulations

Ventilative cooling (VC) is a way to cool or to prevent overheating in a building by means of ventilation rates higher than hygienic ventilation rates. To this end, natural (such as windows, vents, louvers) as well mechanical (extract or supply fans) ventilation devices can be used.

Control of indoor climate systems in active houses

The term of “Active House” recently developed, addressing houses that target a balanced optimization of indoor environmental quality, energy performance and environmental performance. According to the idea of not only being energy efficient and eco-friendly, Active Houses equally focus on indoor environmental qualities, in particular daylight and air. With their tendency towards intensive sun penetration, natural ventilative systems and generally intensive connections to the exterior, Active Houses challenge the balance of technical and individual indoor climate control.

Coupling hygrothermal whole building simulation and air-flow modelling to determine strategies for optimized natural ventilation

In both, newly built and renovated buildings the building air-tightness has to be ensured. With a tight building envelope comes a low infiltration air-exchange. A minimum outdoor air exchange to ensure acceptable moisture and indoor air quality levels must be maintained. A model is introduced, that couples hygrothermal whole building simulation with a multi-zone air-flow simulation.

Passive Cooling Through Ventilation Shafts in High-Density Zero Energy Buildings: A Design Strategy to Integrate Natural and Mechanical Ventilation in Temperate Climates

Zero Energy Buildings require airtightness and mechanical ventilation systems to provide air changes and energy saving. These requirements contrast with the principles of natural ventilation. Through a case study located in Modena, Italy, a design strategy is proposed as a solution to integrate natural and mechanical ventilation systems at different times of the year to reduce the energy consumption in a newly designed high-density ZEB. The internal comfort evaluation for the warm season is then verified with a multizone dynamic simulation and a CFD analysis.

Ventilative cooling in national energy performance regulations: Requirements and sensitivity analysis

Higher insulation and air tightness levels of buildings, increase the risk on overheating. Ventilative cooling as passive technique can limit overheating and decrease cooling energy consumption. The national energy performance regulations (EPBD) determine whether, how and under which requirements ventilative cooling can assist to reduce cooling demand and overheating. Therefore, those regulations are a key factor in the market uptake of ventilative cooling. Without a realistic and achievable approach, ventilative cooling will marginally be applied in buildings.

Simulation of night ventilation performance as a support for an integrated design of buildings

Passive cooling by night ventilation is one of the most promising approaches to reduce cooling energy demand of office buildings in moderate climates. However, the effectiveness of this system depends on many parameters.

Pages