Towards Real-Time Model-Based Monitoring and Adoptive Controlling of Indoor Thermal Comfort

Thermal comfort is an important aspect of the building design and indoor climate control as modern man spends most of the day indoors. Conventional indoor climate design and control approaches are based on static thermal comfort models that views the building occupants as passive recipients of their thermal environment. Assuming that people have relatively constant range of biological comfort requirements, and that the indoor environmental variables should be controlled to conform to that constant range.

The flow interaction of air distribution with thermal plumes and the effect on the air velocity fluctuation under increased heat load conditions

Flow interaction between thermal plumes and vertical air distribution and the resulting airflow structures were investigated under increasing heat load conditions. The main objective was to investigate the large-scale flow patterns, airflow fluctuation and frequency of the flow field. The flow interaction between thermal plumes and ventilation provides random flow motion and vortical structures that further effect the airflow characteristics such as velocity and temperature fields, turbulence intensity and frequency of the fluctuations.

Inter-model comparison of indoor overheating risk prediction for English dwellings

According to the 2016 Household Projections report, England’s housing stock could reach 28 million households by 2039 with approximately one fifth being new constructions. A significant proportion of these newly built dwellings may face a high risk of overheating as a result of the combined effects of climate change and more stringent building thermal efficiency standards, if not appropriately designed.

The Reintroduction of Natural Ventilation to a 19th Century Opera House, Utilising Calibrated Computer Simulation and User Operation

The Royal Wanganui Opera House (RWOH), in Whanganui, New Zealand, was constructed in 1899, and now seats 830 people. This building was designed with a natural ventilation system; however, this system is no longer in operation and the RWOH has received regular complaints from patrons regarding indoor thermal comfort. Various options for mechanical systems to improve indoor comfort during summer performances have been considered, but have been deemed too costly. The RWOH is listed with Heritage New Zealand as a Category 1 heritage building.

Impact assessment of natural ventilation on thermal comfort levels in sustainable residential buildings

In the present paper the impact of natural cross-ventilation on thermal comfort levels in sustainable residential buildings is evaluated. A sustainable dwelling is designed in Crete and various scenarios of different combinations of open windows and doors in the ground floor, the first floor and between the floors are tested to determine the final scenarios with the best possible airflow movement.

The influence of occupancy behaviour on the performance of mechanical ventilation systems regarding energy consumption and IAQ

It has already been proven that a large portion of the energy consumption gap between simulations and reality is due to the occupant behaviour in buildings. The improving airtightness of buildings makes that Indoor Air Quality (IAQ) can no longer rely on air renewal through infiltrations, bringing the need of ventilation systems. Within this frame, an ongoing dissertation focuses on the relationship between occupancy behaviour and ventilation systems in low energy buildings.

Challenges of using passive ventilation to control the overheating of dwellings in noisy environments

Where residential developments rely on opening windows to control overheating, there can be a compromise between allowing excessive noise ingress with windows open, or excessive temperatures with windows closed. This problem is exacerbated by the move towards better insulated, more airtight buildings and the need, particularly in urban areas, to consider development on noisier sites. A working group has been formed by the Association of Noise Consultants to provide guidance on acoustic conditions and design when considering both the provision of ventilation and prevention of overheating.

The future of hybrid ventilation in office buildings – energy simulations and lifecycle cost

This study presents a comparison of three ventilation systems; automated Natural Ventilation (NV), balanced Mechanical Ventilation (MV) with heat recovery and Hybrid Ventilation (HV) with heat recovery for a new build office building.
The energy demand for heating and electricity as well as the indoor climate of the building were simulated using IESVE. Three key European cities were selected (Copenhagen, Munich and London) in order to investigate the applicability of the principles to different climatic conditions in Europe.

Hybrid ventilation in new and refurbished school buildings – the future of ventilation

More than 64 million pupils spend more time in school than in any other place except home in Europe (European Commission, 2014). The indoor air quality is often a challenge in existing school buildings and the lack of proper ventilation often leads to negative effects like increased absenteeism and sick building syndrome symptoms as well as lowered performance amongst students compared to new buildings.

Cool materials in the urban built environment to mitigate heat islands: potential consequences for building ventilation

Urban warming, commonly referred to as the ‘Urban Heat Island’ phenomenon (UHI), is a well-established effect that affects cities all over the world. This occurs due to urban physical characteristics such as urban canyon geometry and vegetation, but mainly to its typical materials. The thermal properties of the materials used for the external walls and roofs of buildings, as well as pavements, can have a major influence on the surface temperature. As a consequence of increased temperature, the UHI has an effect on energy consumption for heating and cooling urban buildings.

Pages