U.S commercial building airtightness requirements and measurements

In 1998, Persily published a review of commercial and institutional building airtightness data that found significant levels of air leakage and debunked the myth of the airtight commercial building. Since that time, the U.S. National Institute of Standards and Technology (NIST) has maintained a database of measured airtightness levels of U.S. commercial building leakages, in part to support the development and technical evaluation of airtightness requirements for national and state codes, standards and programs.

Preliminary analysis of U.S residential air leakage database v.2011

Air leakage and other diagnostic measurements are being added to LBNL’s Residential Diagnostics Database (ResDB). We describe the sources of data that amount to more than 80,000 blower door measurements. We present summary statistics of selected parameters, such as floor area and year built. We compare the house characteristics of new additions to ResDB with prior data.

Quality Management Approach to Improve Buildings Airtightness Requirements and Verification

In France, starting on January 1st, 2013, a minimum airtightness value for all residential building will be required by the energy performance regulation (RT 2012). It will be compulsory to justify for any new residential building that its airtightness is below 0.6m3/h.m² at 4 Pa (Q4Pa_surf) for single-family houses and 1 m3/h.m² for multi-family buildings. 

Class C air-tightness: Proven roi in black and white

At the end of 2010, two manufacturers have commissioned an independent engineering firm to carry out a cost-benefit analysis of air-tightness in ventilation. The study report uncovers the clear return of investment in class C air-tight ventilation systems in Belgium.
The study comprises:

Application of airtightness to healthcare buildings

The thrust of airtightness specification and testing is derived from energy considerations. The application to healthcare buildings and specialist laboratory facilities embodies the same principles but derives the appropriateness of the criteria with reference to [a] producing controlled and controllable cascading pressure zones and [b] specifying or quantifying the potential exposure in the event of failure of mechanical ventilation.

The use of a sampling method for airtightness measurement of multifamily residential buildings - An example

Large buildings can not always be tested as a single pressure zone. In Europe, different approaches have been proposed concerning the choice of representative parts of the building (sampling method) and the compliance check in situations, when several parts of the building have to be tested separately. The preliminary Czech standard TNI 73 0330 defines a sampling method, as well as subsequent treatment of results and compliance check procedures for multifamily residential buildings. This contribution reports the results of a trial test of TNI 73 0330 method.

The use of building own ventilation system in measuring airtightness

The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio in Finland participate a project, in which different tools will be used and tested to improve the energy efficiency of public buildings. In this project there were pilot buildings e.g. schools. The other pilot school consumed much more heating energy than the other same type of school. Air tightness was measured using the own ventilation system of the building and by remote control from the central operation room.

Behavior of leakages exposed to dynamic wind loads. A numerical study using CDF on a single zone model

Wind is a potential dominant factor regarding the air infiltration through building envelopes. Due to its dynamic characteristics, quite complex aerodynamic phenomena arise around a structure or through cracks and openings. Energy perfomance is influenced by the climate conditions and thus it should be much more researched. Despite the fact that steady state measurements of infiltration rates offer a simple and easy way of estimating an enclosure’s airtightness level, a supplement to those methods might be imposed.

Case study: Effect of excessive duct leakage in a large pharmaceutical plant

A study of excessive air leakage in the ductwork of a large pharmaceutical plant located in the Southeast United States is executed in order to determine the energy loss associated with the excessive ductwork leakage. Much of the air supplied by the ductwork is delivered to clean rooms. The analysis requires the development of a model that is used to predict the increased energy costs. The model is applied for each 15 minute interval over the entire year (approximately 35,000 data points).

Feasibility study of ventilation system air-tightness

The feasibility of good air-tightness in new buildings can be determined based on the obtained air tightness classes as defined in EN 12237. In this paper a model is described which allows to calculate the energy loss caused by leak losses in ventilation systems based on the air tightness class and the feasibility of realising a good air-tightness.

Pages