Benedikt Kölsch, Iain S. Walker, William W. Delp, Björn Schiricke, Bernhard Hoffschmidt
Languages: English | Pages: 8 pp
Bibliographic info:
41st AIVC/ASHRAE IAQ- 9th TightVent - 7th venticool Conference - Athens, Greece - 4-6 May 2022

Unintended Infiltration in buildings is responsible for a significant portion of the global housing stock energy demand. Today, the fan pressurization method, also known as blower-door test, is the most frequently used measurement method to evaluate the airtightness of buildings and determining the total air change rate of a building or a building element. However, the localization and quantification of single leaks in the building envelope remain difficult and time-consuming. In this paper, an acoustic method is introduced to estimate the leakage size of single leaks in buildings. Sound transmission measurements and measurements of airflow have been conducted in a laboratory test apparatus. The objective of this investigation is to compare acoustic measurements with airflow measurements of leaks under the same boundary conditions. The test apparatus consists of two chambers, which are separated by a test wall. This test wall represents a single characteristic air leakage path in the building envelope. Various types of wall structures with different slit geometries, wall thicknesses and insulation materials have been investigated. The acoustic measurements have been performed with a sound source placed in one chamber and ultrasonic microphones located in both chambers. The results of the acoustic measurements were compared to airflows through the test wall measured using a flow nozzle to provide estimates of the uncertainty in the acoustic approach.