AIVC - Air Infiltration and Ventilation Centre

Search form


You are here

Home  |  LBNL

Accuracy of flow hoods in residential applications

Wray, C.P., Walker, I.S. , Sherman, M.H., 2002
Bibliographic info: LBNL - Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, California, Volume 1, Pages 339-350.
Languages: English

To assess whether houses can meet performance expectations, the new practice of residential commissioning will likely use flow hoods to measure supply and return grille airflows in HVAC systems. Depending on hood accuracy, these measurements can be used to determine if individual rooms receive adequate airflow for heating and cooling, to determine flow imbalances between different building spaces, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. This paper discusses these flow hood applications and the accuracy requirements in each case. Laboratory tests of several residential flow hoods showed that these hoods can be inadequate to measure flows in residential systems. Potential errors are about 20% to 30% of measured flow, due to poor calibrations, sensitivity to grille flow non-uniformities, and flow changes from added flow resistance. Active flow hoods equipped with measurement devices that are insensitive to grille airflow patterns have an order of magnitude less error, and are more reliable and consistent in most cases. Our tests also show that current calibration procedures for flow hoods do not account for field application problems. As a result, a new standard for flow hood calibration needs to be developed, along with a new measurement standard to address field use of flow hoods. Lastly, field evaluation of a selection of flow hoods showed that it is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement.

Related publications

The current development in building energy efficiency towards nZEB buildings represents
INIVE eeig, EU