Comparison between some existing performance requirements for air permeability and water-tightness in buildings.

Compares some existing performance requirements for air permeability and water-tightness of windows. Gives tables showing main European standards. Finds that a large variety of methods of test and grading systems is used and concludes that steps should be taken to unify the systems.

Adaptable modules for air infiltration studies in home heating.

The Alberta Home Heating Research Facility consists of six uninhabited wood frame single storey modules with full basements. Describes the modules which are designed to test domestic heating strategies in a northern climate. Reports a series of preliminary measurements of infiltration rate using SF6 as a tracer gas and measuring the rate of decay of the gas. Future studies are planned using SF6 in constant concentration.

Shut that door !

Notes that some of the main contributors to excessive ventilation in industrial buildings are external doors and loading bays. Discusses the choice of industrial doors to minimise energy loss. Discusses flexible doors, strip doors, loading bays, air curtains and door sealing.

New insights concerning air tightness of cold rooms. Nieuwe inzichten over de lekdichtheid van gekoelde ruimten.

Reports insights from research project "Optimalisatie koelhuisbouw" (Optimisation of cold store buildings) by the Delft Technical University for the Foundation for Cooling Technique Development. Pleads for standardisation of the maximum admissible heat gain by air leakage and yearly averaged pressure differences between the cold room and its surroundings. Gives some numerical examples. Uses theory of specific equivalent leak opening.

Radon, a radiation problem in dwellings. Radon asuntojen sateilysuojeluongelmana.

Radon, an inert radioactive gas, and its products of decomposition, will attack the lungs when present in high enough concentrations. Notes high concentrations of radon in mines and other underground spaces and even in well water. Radioactivity of building materials is a problem in Sweden. States concentration of radon in air is highly dependent on ventilation. Radioactivity in a dwelling is highest in the morning and drops in the daytime when doors and windows are open. Normally an air change rate of 0.5 per hour keeps radon content of indoor air at an acceptable level.

Listening for air leaks - How to spot infiltration with your ears.

Describes use of an acoustic method developed by Keast to detect air leaks. A loud source of sound is placed inside the building and a microphone, stethoscope, rubber hose or sound meter is used to detect places where anincrease in sound indicates air leakage. Finds method is effective in detecting simple leaks but will not spot complex paths through walls.

A relation between transmission loss and air infiltration characteristics in windows.

Reports tests on 4 different windows of air leakage and sound transmission loss. Expresses each of these two quantities by a single parameter and finds reasonable correlation between the parameters. Concludes, within the limitations of the method, that the air leakage class of a window can be deduced from field measurements of sound transmission loss, when the acoustical performance in perfect sealing conditions is known.

A fast-response heated element concentration detector for wind tunnel applications

Describes the operating characteristics of a small aspirated concentration sensor based on a hot-film anemometer. Constant aspiration velocity past the sensor produces a linear output over a wide range of tracer gas concentrations, and a useful bandwidth of 0-500 Hz. A simple experimental technique for dynamic calibration is presented, with frequency response inferred from a model of the effects of molecular diffusion and hot-film response.

Natural ventilation principles in design.

The requirement for better methods of predicting infiltration and natural ventilation rates has been reinforced by the incentive to reduce energy consumption in buildings. Natural ventilation is basically dependent on the effects of wind and temperature difference and on the resistance to airflow through the building. Discusses in detail these factors and highlights areas requiring further study. Briefly illustrates energy savings available by controlling natural ventilation.

Ventilation measurements in housing.

Outlines factors influencing natural ventilation rates. Discusses techniques for measuring natural ventilation. Gives results of pressure measurements, made by the Building Research Establishment, of the leakage of houses and of tracer gas measurement of room ventilation rates. Discusses variation in air leakage rates with time. Gives results of measurements of the distribution of air leakage between components of the building shell.

Pages