Sensor-based demand-controlled ventilation: a review.

With sensor-based demand-controlled ventilation ( SBDCV), the rate of ventilation is modulated over time based on the signals from indoor air pollutant or occupancy sensors. SBDCV offers two potential advantages: better control of indoor pollutant concentrations, mid lower energy use and peak energy demand.

The building envelope as an air filter.

Recent research suggests that fine-particulate air pollution increases the incidence of lung disease and premature death. In this paper, single fibre filter theory was used to predict the theoretical particulate collection efficiency of air permeable walls (dynamic insulation). The relationship between particle diameter and filtration efficiency for dynamic insulation, as a function of flow rate, is examined and compared to that for a conventional filter.

Relating sick building symptoms to environmental conditions and worker characteristics.

Recent concern has centered on "sick buildings" in which there has been an unusually high percentage of health complaints by the building's occupants. Typically, these symptoms are thought to be tied to indoor air quality characteristics, such as high levels of respirable particles or volatiles, thermal conditions, etc. In addition, recent studies have drawn connections between "sick building syndrome" (SBS) symptoms and non-environmental variables, i.e., personal and occupational factors. This paper presents a brief review of a study by Hedge et al.

Developments in noise control.

Unless requirements are laid out in codes, control of noise in buildings is often an afterthought. The measures taken to control noise, however, are invariably linked to other building subsystems. Mechanical and plumbing subsystems generate noise; the design of walls, ceilings and floors affects sound transmission.

This paper addresses four topics:

Impact of early stage incomplete mixing on estimating VOC emissions in small test chambers.

Most of the existing emission models developed from small-scale chamber tests assume complete mixing in the chamber throughout the test period. This paper examined this assumption using a Computational Fluid Dynamics (CPD) model. The model simulated the three-dimensional air velocity profiles and Volatile Organic Compound (VOC) concentration distributions from wood stain in a well-designed mixing chamber of 1.0X0.8X0.5 m3. The model used measured data to determine the time-dependent voc surface concentrations of wood stain.

Candle in the wind.

      

Building for better breathing.

              

Pages