Solar access, passive cooling and microclimate in the city: the Polis project.

This paper describes a European project to produce comprehensive design guidance on urban layout to ensure good access to solar gain, daylighting and passive cooling. The project involves:

Calculation of air infiltration in buildings and the movement of the air inside buildings corrected by heat transfer.

The purpose of this work is to evaluate the air infiltration through the high buildings and in the same time to determine the exchange of the air between the rooms and the influence of the heat transmission for these exchanges. The method of approach for this problem is a network model. This is a grid system in which the nodes are the rooms or zones of the building and the connection between two nodes simulates a flow path of a given resistance. It was built a computer program for predicting the interactions between different zones which was applied for a given case of a building.

Simplified model and sensitivity analysis for natural ventilation load in multifamily buildings.

A simplified natural ventilation model for dwellings is developed and used to determine the impact of different ventilation strategies on the building loads and zones temperatures. It deals with the sensitivity of loads and temperatures to classical default parameters as : wind velocity, wind coefficient value, building environment and shielding conditions, and the actual cross section of the openings. All the simulations are performed using the TRNSYS 14.2 simulation software, TYPE56.

Integrated Smart control of heating, cooling, ventilation, daylighting and electrical lighting in buildings.

The present energy consumption of European Buildings is higher than necessary, given the developments in control engineering. Optimization and integration of smart control into building systems can save substantial quantities of energy on a European scale while improving the standards for indoor comfort.

Experimental investigation of natural ventilation in an office building.

The work presented in this paper was done in 1997 as a final thesis in mechanical engineering, supervised by TRANSSOLAR Energietechnik GmbH in cooperation with the Institute for Thermodynamics and Heat Technology (ITW), University of Stuttgart. The contents of the work is the investigation of natural ventilation through window openings (single sided and cross ventilation) in an existing office space. Both measurements and computer simulation have been conducted.

Energy comfort 2000 - the application of low energy technologies to seven new non-domestic buildings.

This paper describes the results coming out of the European Commission supported THERMIE Target Project Energy Comfort 2000. This was the first Target project, containing eight non-domestic buildings, started in July 1993 and to be completed at the end of 1998. The project aimed to design and construct buildings which use less than 50% of the energy of a traditional equivalent, by using passive methods, particularly to avoid the need for air-conditioning. High quality internal conditions were to be achieved.

Numerical simulation of the air cooling by natural ventilation inside the "Maison ronde" of Botta.

The present study applies the N3S CFD code to the air cooling simulation on an "architectural reference object", namely the "Maison Ronde" of Mario Botta. The summer night situation is examined when natural ventilation creates indoor air motion and cools the building structure. The transient behavior of the walls is represented by a thermal model coupled with the CFD code. The simulation evaluates the unsteady temperatures of the outdoor and indoor air flow together with those of the wall surfaces.

Atlas of natural cooling techniques in southern Europe: application to evaporative cooling systems.

This study is a contribution to European projects Pascool/Joule II and Altener/Sink that deal with the usability of passive cooling systems in Europe. The first phase of this work was to define design methodology in order to evaluate natural cooling potential according to the climatic quantification criteria of the site, the cooling needs of the building, the cooling system performances, and comfort criteria defined by the couple of temperature and relative humidity set points.

A passive solar energy building for the University of La Pampa in Argentina.

During 1997, an energy efficient building was designed, featuring energy conservation, passive solar heating, natural cooling and daylighting strategies. It is located in the province of La Pampa, in the temperate semi-arid region of central Argentina. The resulting compact design houses takes 634m2 of useful floor area with main spaces. An audience class, two laboratories, four research offices, one simple class and services make up the building. Solar windows are provided for all main spaces, except in the audience class. Clestories contribute to add solar gains and natural lighting.

Cometres, a simple tool for the improvement of summer comfort in residential buildings.

In summer, it is possible to achieve a satisfactory comfort in residential buildings with purely passive means as thermal inertia, possibility of cross ventilation and solar protection of the external envelope. These parameters have to be taken into account at the earliest stages of building design.

Pages