Briefly reviews the study of wind flow around buildings. Shows that fundamental theoretical and experimental studies are beginning to produce simple descriptive and mathematical models of flows round buildings. These should enable designers to predict the general features of wind around a proposed building or group of buildings at an early stage in the design. Gives some examples of these models.
Describes an investigation to see what energy saving can be achieved by the regulation of mechanical ventilation systems in high rise buildings. Measures air leakage in a block of flats, and uses a calculation model to predict the amount of energy lost due to ventilation in various situations. Concludes that the reduction of ventilation has no disadvantageous consequences for the operation of the system, and that the extracted air flow is affected more by incorrect adjustment of extractor vents then by opening windows, regardless of the setting of the ventilator.
States that one of the major difficulties in estimating air infiltration rates in buildings is lack of full scale data on pressure distribution on various structural shapes located in different types of surface roughness category. Tries to fill this gap by studying two building structures of different shapes and situated in different environments, registering the mean pressure distribution and calculating the rate of air leakage due to openings. The first house is of old type construction and in a `semi-urban' environment.
Many mechanically ventilated buildings are over-ventilated since ventilation rates are based on a fixed number of people (often in excess of the average occupancy) and no allowance is made for infiltration. States that the CO2 concentration in the ventilated space can be related to the ventilation rate per person, and by modulating the fresh air flow to maintain a constant CO2 concentration, a constant ventilation rate per person can be obtained.
Analyses an infiltration heat loss calculation in accordance with Standard CSN 06 0210, with regard to the minimum air exchange rate (0.3 ach/hr). Concludes that aeration through windows should be graded for buildings which are differently located in the landscape and thus differently exposed to the wind effect.
There are two types of air movement in the shell of a building - movement along the insulation as in cavity walls and movement through the insulation. Generally the heat losses due to the faults in the inner lining of the vapour barrier and the consequential air movement through the shell are much bigger then losses due to faults in the insulation - they cannot be compensated for by using tighter wind protection.
Describes the application of a model that relates infiltration to a quantity called the effective leakage area. This quantity scales the infiltration to local weather conditions and major design features of the house. The model isused to calculate the ratio of infiltration to leakage area averaged over the heating season, for a large number of sites in the US. It provides an effective tool for builders and designers who need a rational basis for assessing compliance with construction quality standards in ventilation.
Describes work sponsored by the Electric Power Research Institute (EPRI) to investigate indoor air quality in 10 single-family houses and 2 office buildings in Boston. The point was to compare indoor and outdoor pollutant levels, and find reasons for the differences. Found particulate levels were higher indoors, and houses with gas facilities showed higher concentrations of carbon monoxide and nitrogen oxides.
Gives instructions for weatherstripping and caulking houses, indicating which materials are best for different jobs, and comparing prices. Covers jamb weatherstripping for doors and windows, weatherstripping for door bottoms, sealing the joist and attic spaces, and sealing around window and door openings.
Defines types of condensation occurring in houses and describes practical ways for the householder to control surface and concealed condensation. Gives instructions to builders for installing air/vapour barriers to meet the required standards, and shows ways in which ventilation can control condensation.