The strategic implications for large, dynamically insulated buildings in cities.

The concept of dynamic insulation, where cold air is drawn through porous insulation in a building envelope from outside to inside, thereby returning heat energy normally lost by conduction back into the interior of the building, has been studied by several researchers, in Japan, Europe and Canada. However the work to date has largely concentrated on the physical processes in individual wall, floor or roof elements and only a small number of experimental buildings (all of a small domestic scale) have been adequately monitored.

Study on the night-time ventilation for cooling the building having thick walls with outer insulation

Hokkaido is distinguished from the other island of Japan by having colder winters and cooler summers. The average monthly minimum is about -10 °C and summer daily average maximum around 25°C, so that efficient space heating becomes the dominant aspect But on hot days the temperature may reach 35°C, though for short period of time. There are few houses constructed to prevent overheating ID summer. I have designed and built a house for my family ID Sapporo which has cavity walls of concrete blocks insulated with urethane 100mm thick and deeply recessed, but operable widows.

Street atmosphere is ventilated by solar energy.

                

Numerical simulation of indoor environment in large indoor spaces with natural ventilation. Part I: Development of a simultaneous simulation technique for inside and outside airflow of large indoor stadiums.

A purpose of this research work is to study the environmental control in large indoor stadiums which utilize the natural ventilation. In these problems, effects by the airflow in and around the stadium should be analyzed. In this research work, a numerical analysis technique which enables simultaneous simulation of indoor airflow and the airflow around buildings was developed adopting composite grid coordinate calculation technique. In this paper, an outline of this technique is described.

Thermal environments in an atrium space as an institution for the elderly in a winter city.

This paper presents a method for the dynamic numerical analysis in calculating the thermal environment in the atrium space of an institution for the elderly. The analysis is carried out and using BASIC. In Kushiro, it is very foggy, cool and highly humid in Summer. On the other hand, it has little snow with clear skies while still being cold in Winter. In Winter, the atrium space is heated by satisfactory solar radiation in the daytime, so outdoor air flowing into the atrium space is warmed .

CFD simulation of airflows and thermal environment in passive architectures - application to a room with Trombe wall system.

Applicability of CFD simulation to designing passive architectures was investigated using a passive solar room with a Trombe wall system inside it. In the investigation non-steady numerical simulation was performed to predict thermal environment in the test room. Two weather models assuming a typical fine winter day were compared, one was the model based upon the data in Osaka and the other was that in Sapporo. The test room has glazing in the south side wall and in the north side one. Each glazing was covered with an insulating door during night.

A simplified cooling load calculation method and air conditioning systems for well insulated buildings.

Thick insulation in buildings offers great potential not only for decreasing cooling load but also for changing its calculation method, and for changing system design, operation or control of the system and the thermal environment of the room. The research results of room air temperature changes in well-insulated buildings, show the effects of the daily swing of outdoor temperature and solar radiation are quite small. A simple calculation method for cooling load based on steady state theories is available for such buildings.

Evaluation of summer indoor climate with air movement.

In order to design an environment-conscious house, it is desirable for summer indoor environment, to re-examine thermal conditions warmer than thermal comfort. The role of air movement is important, as it reduces the magnitude of discomfort. This paper discusses the comfort produced by air movement considering two main sensations; coolness and strength of movement, based on results obtained by a series of experiments carried out with five male and five female subjects.

Dehumidification becomes important for a building having thick thermal insulation.

As the sensible heat gain or cooling load are decreased by using thick thermal insulation in a building, the need for dehumidification increases. Especially in Kushiro, it is rather cool and humid in summer because of its foggy weather. In this study, two types of dehumidification systems were developed and their performances were examined. The first is a heat-recovery type, which uses a cooling coil and a sensible heat exchanger. The second is a moisture-absorbent type, which uses heating and cooling coils and an absorbent.

Pages