The increasing power of personal computers has e:ncouraged a proliferation of building energy simulation software packages. The prospective user has no way to quantitatively judge the appropriateness of a given software package for a given design problem. To address this issue, the Building Energy Simulation Test (BESTEST) procedure was developed for systematically testing whole building energy simulation programs and diagnosing sources of predictive disagreement. The BES TEST procedure takes a "comparative testing" approach where a program is compared to itself or to other programs.
There is a need to improve building envelopes in many parts of the developing world. In cold climates, scarce fuel is consumed in an attempt to maintain reasonable indoor temperatures. In Northern Pakistan, traditional houses are made with stone walls while newer buildings, houses and schools, use uninsulated concrete block that has even lower thermal resistance. Evaluation and improvement of these buildings were undertaken with a regional non-governmental organization. Measurements were made of the thermal resistance of typical exterior walls.
A number of interzonal air flow models have been developed to calculate air flows and pollutant transport mechanisms in both single-zone and multizone buildings. The International Energy Agency's Energy Conservation in Buildings and Community Systems program adopted a working group on multizone air flow modeling to study physical phenomena causing air flow and pollutant transport (e.g., moisture) in multizone buildings, develop numerical modules to be integrated into COMIS, and evaluate the computer code.
As thermal storage media, phase-change materials (PCMs) such as paraffin1 eutectic salts; etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in gypsum board, plaster, or other wall -covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range.
Conventional evaporative coolers are high-pressure high-volume devices that deliver cool air by water evaporation wetted pads. Natural down-draft evaporative coolers, or "Cool Towers", are devices developed at The University of Arizona's Environmental Research Laboratory. Similar to conventional coolers, these devices are equipped with wetted pads and sprays at the top which provide cool air by evaporation but the air is moved by gravity flow saving the energy required by the blower. In arid regions, cool towers are useful for cooling buildings and outdoor private and public areas.
This paper documents the energy savings observed for a program operated by the Eugene Water and Electric Board which provided duct sealing for mobile and manufactured homes as its principal measure. Billing data and associated mean outdoor temperature data on more than 400 participants for one or more years pre and post was used as the basis of the savings estimate. The observed savings were used along with site treatment costs to estimate a levelized cost of savings of 12 mills/kWh exclusive of utility management costs.
This paper documents the experimental results and energy savings estimate from an end-use and water metering study of a sample of 104 multi-family sites. These sites were treated with a comprehensive Domestic Hot Water (DHW) retrofit consisting of flow efficient 2.0 GPM showerheads, kitchen and bath aerators, tank thermostat setback to 130°F, and a tank wrap if necessary. These measurements were modeled by a regression model with variables for occupancy, setback degree, and delta flow at the primary showerhead.
In 1995 Tacoma Power initiated a test of residential duct sealing to determine the feasibility of a full-scale program to improve the duct system in customer homes with central system electric heat.
In 1997 the State of Wisconsin began searching for low-income programs that were innovative in their approach and which offered the potential to improve or expand program delivery. TecMRKT Works responded to this call with an RFP to implement the first shared-savings pilot weatherization program in the United States. This paper describes the program being tested in Wisconsin and presents some of the early "lessons learned".
In recent years, residential energy conservation research has focused attention on heating system distribution efficiency. Several field studies in the Pacific Northwest have found forced-air heating systems which have a majority of ducts located in unheated buffer spaces can lose as much as 3 0% of the equipment's heating output to duct air leakage and conduction loss. The magnitude of loss can be equivalent to the combined improvements in building shell insulation levels due to updated energy codes.